#### ection and 1010101010101010101 0101 Onenenen 0101 erener 91 entation in deep 0101 0101 learning

**O**00

01010101 0101 010101

AI

# **Colin Decourt - ANITI / NXP Semiconductors**

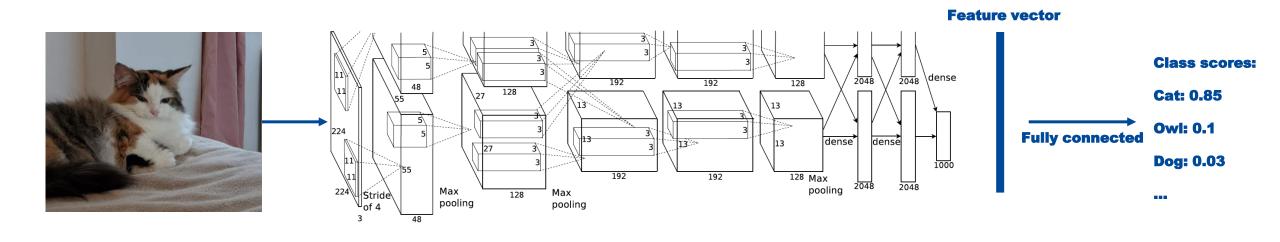
08/02/2023



Université Fédérale

Toulouse Midi-Pyrénées

## From classification...

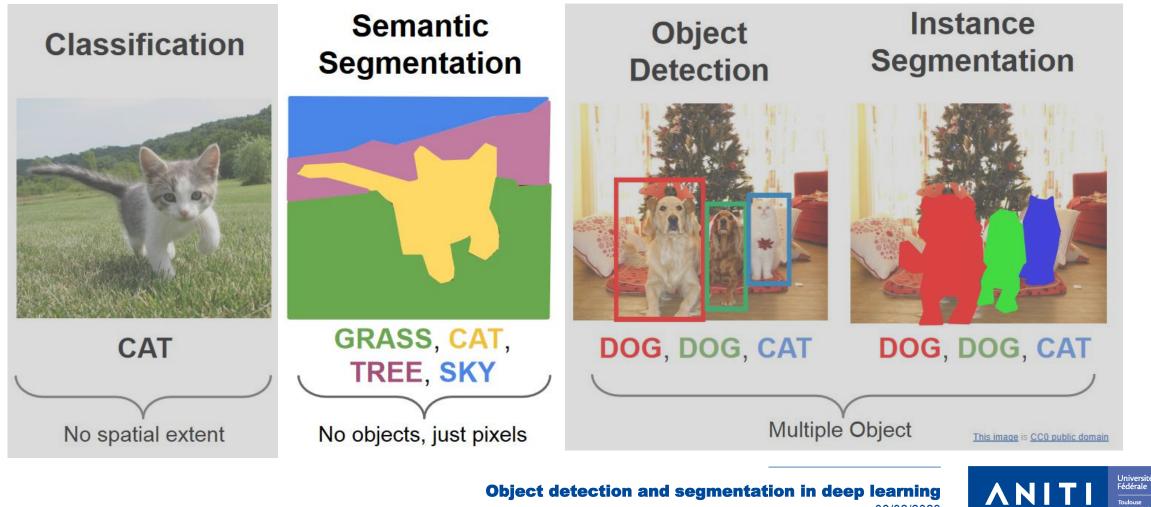




**Object detection and segmentation in deep learning** 08/02/2023

2 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classification with deep convolutional neural networks. *Commun. ACM* 60, 6 (June 2017), 84–90. DOI:https://doi.org/10.1145/3065386

# ... to object detection and segmentation



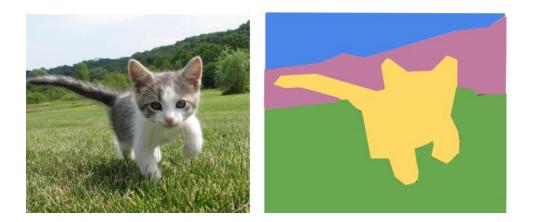
**Object detection and segmentation in deep learning** 08/02/2023

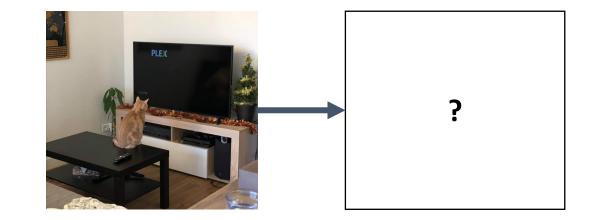
Toulouse Midi-Pyrénée



# **Semantic segmentation: what is it?**

- Assign each pixel in the image to a category label (grass, cat, tree, sky...)
- Paired training data: for each training image, each pixel is labelled with a semantic category
- At test time, classify each pixel of a new image

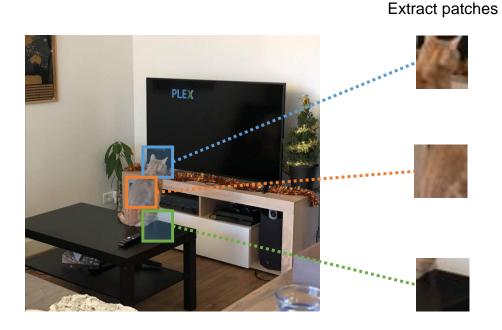


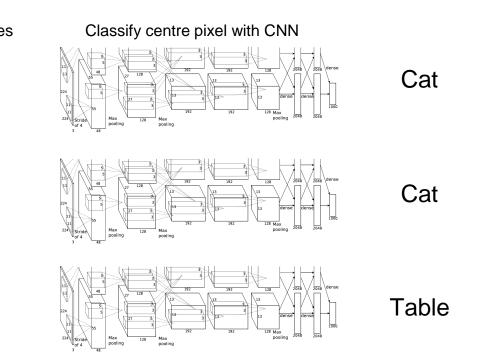




# Semantic segmentation idea: sliding window

- Classify many crops of the image using CNN (ResNet, VGG...)
- How to classify without context?
- How do we include context?



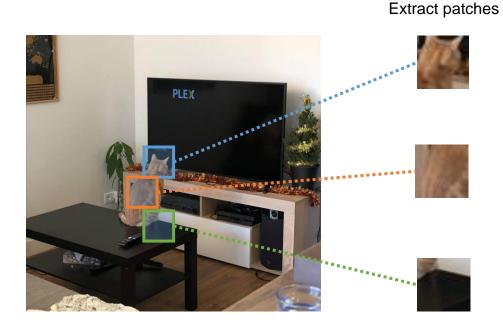


**Object detection and segmentation in deep learning** 08/02/2023

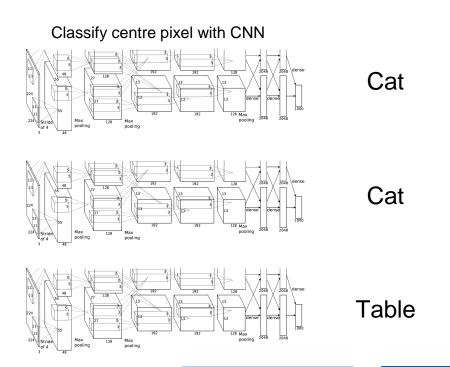


# Semantic segmentation idea: sliding window

- Classify many crops of the image using CNN (ResNet, VGG...)
- How to classify without context?
- How do we include context?



Very inefficient! For a 800x600 images ~ **58M boxes** Not reusing shared features between overlapping patches

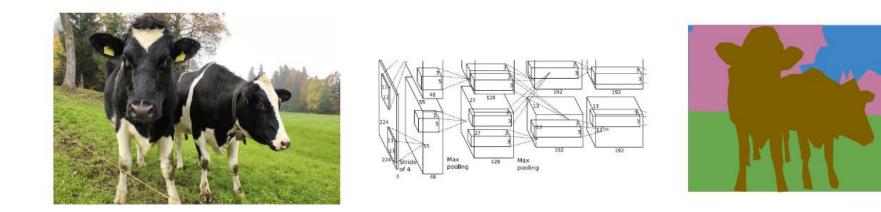




**Object detection and segmentation in deep learning** 08/02/2023

#### **Semantic segmentation idea: convolution**

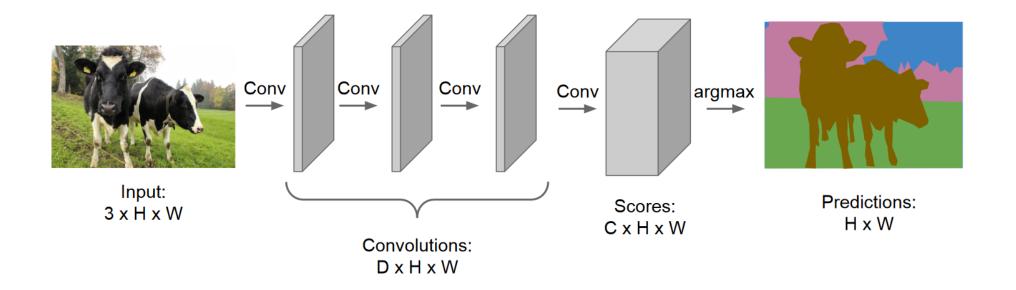
- Idea: encode image features with ConvNets, and perform semantic segmentation on top
- Classification architectures reduce spatial sizes to go deeper, but semantic segmentation requires the output size to be the same as the input size





## **Semantic segmentation idea: fully convolutional**

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at ones

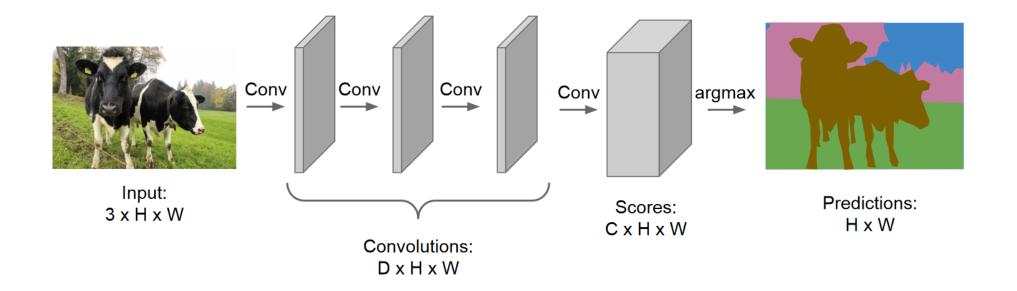




7

#### Semantic segmentation idea: fully convolutional

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at ones

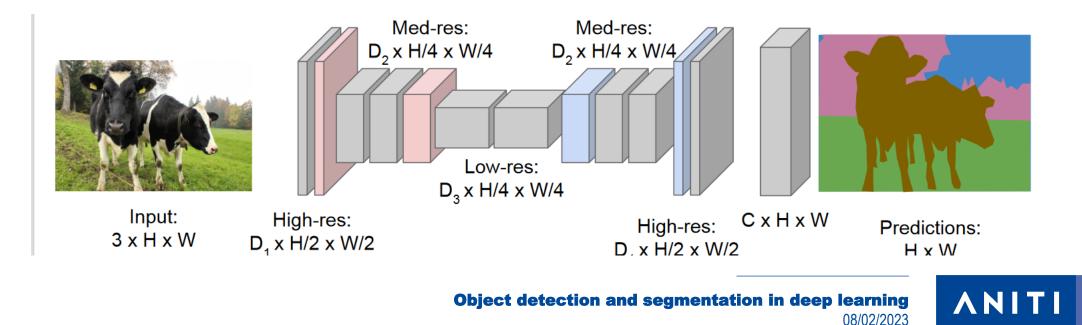




7

# **Semantic segmentation idea: fully convolutional**

- Design the network as a bunch of convolutional layers, with downsampling and upsampling inside the network!
- Downsampling can be pooling, strided convolution...
- Upsampling can be nearest neighbour interpolation, unpooling, transposed convolution



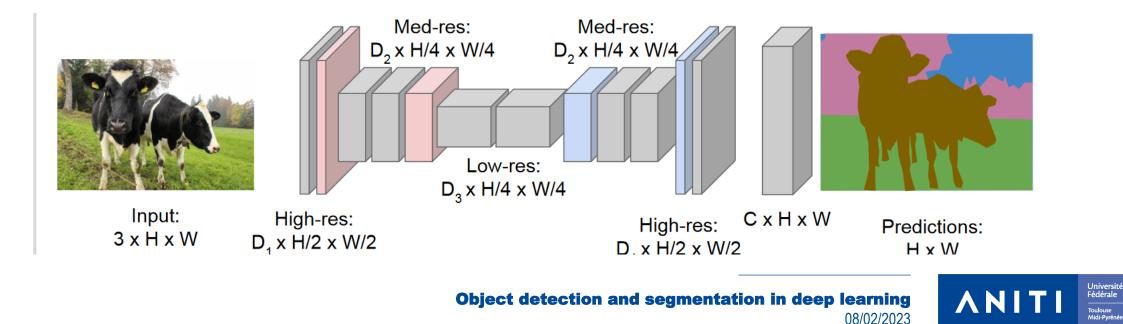
Universito Fédérale

Toulouse Midi-Pyrénée

Idea: Learn to project lowresolution features onto pixel level (high-resolution)

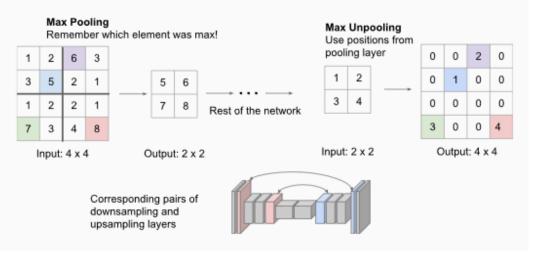
#### **Semantic segmentation idea: fully convolutional**

- Design the network as a bunch of convolutional layers, with downsampling and upsampling inside the network!
- Downsampling can be pooling, strided convolution...
- Upsampling can be nearest neighbour interpolation, unpooling, transposed convolution

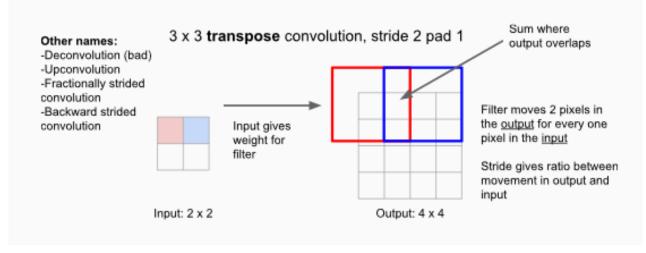


# **Upsampling low-resolution features**

Restore the condensed feature map to the original size of the input image by expanding the feature dimension



1. Unpooling



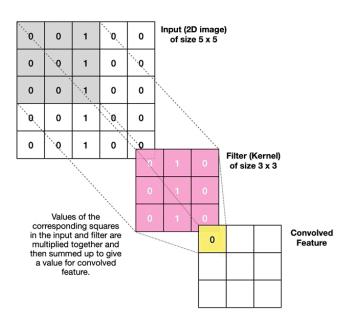
2. Transposed convolution



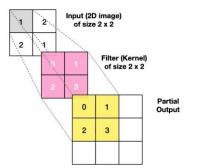
## **Transposed convolution**

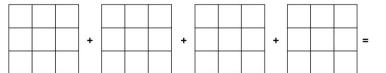
# Learn to upsample the input feature map to the desired size using learnable parameters

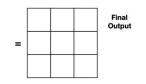
**Classic convolution** 



#### Transposed convolution







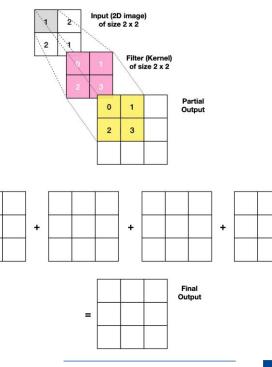
ANITI Toulouse Midi-Pyrénées

**Object detection and segmentation in deep learning** 08/02/2023

# **Transposed convolution**

Learn to upsample the input feature map to the desired size using learnable parameters





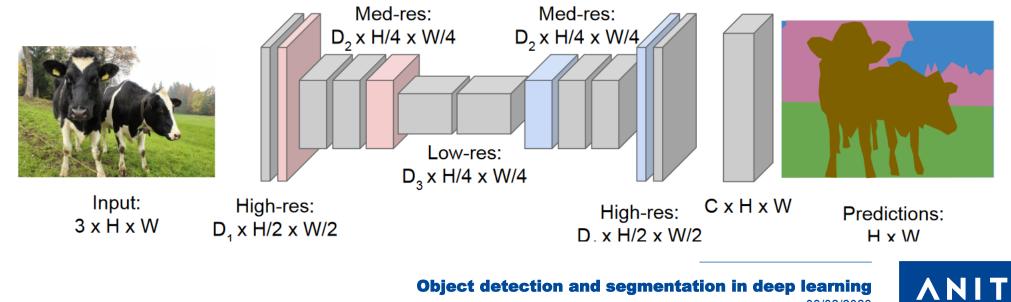
ANITI Toulouse Midr-Pyrénées

=

#### **Object detection and segmentation in deep learning** 08/02/2023

# **Semantic segmentation: fully convolutional**

- Design the network as a bunch of convolutional layers, with downsampling and upsampling inside the network!
- Downsampling can be pooling, strided convolution... ٠
- Upsampling can be nearest neighbour interpolation, unpooling, transposed ٠ convolution



**Object detection and segmentation in deep learning** 08/02/2023 Universito Fédérale

Toulouse Midi-Pyrénée



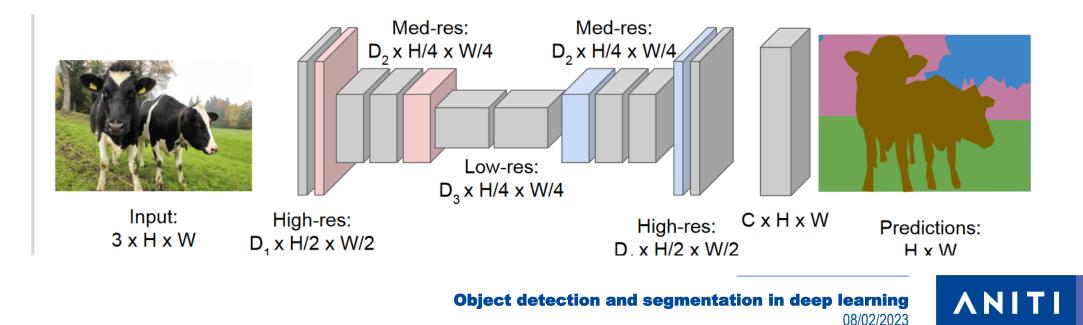
Don't differentiate instances (yet), only care about pixels

Universito Fédérale

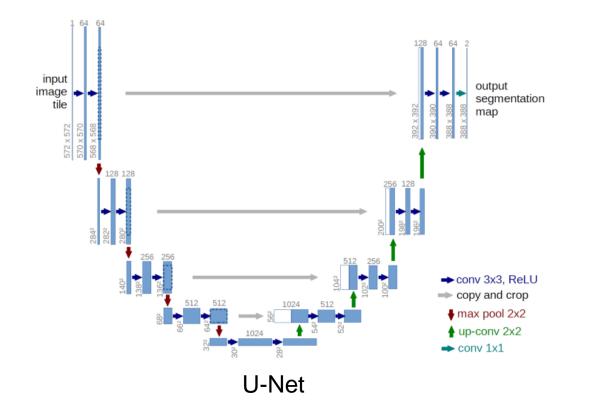
Toulouse Midi-Pyrénée

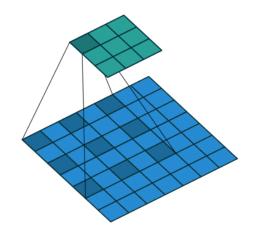
# **Semantic segmentation: fully convolutional**

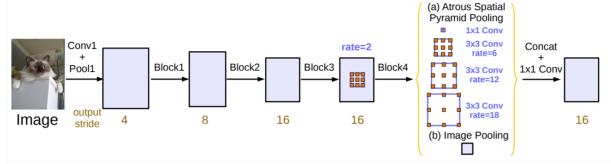
- Design the network as a bunch of convolutional layers, with downsampling and upsampling inside the network!
- Downsampling can be pooling, strided convolution...
- Upsampling can be nearest neighbour interpolation, unpooling, transposed convolution



#### Semantic segmentation: some models...







DeepLabv3

08/02/2023

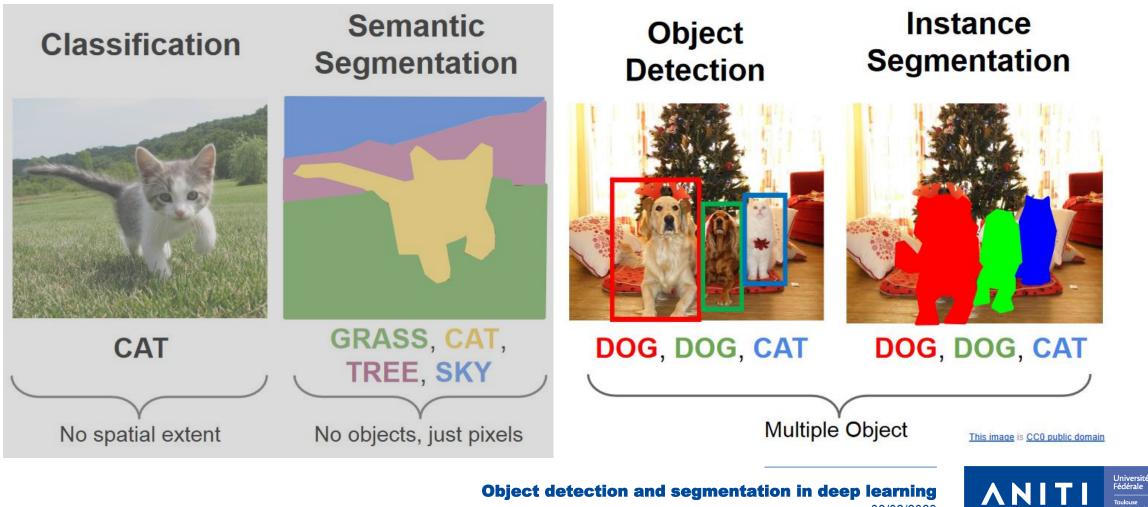
#### **Object detection and segmentation in deep learning**



Ronneberger O., Fischer P., Brox T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. <u>https://doi.org/10.1007/978-3-319-24574-4\_28</u>

2. L Chen, G Papandreou, F Schroff, H Adam Rethinking Atrous Convolution for Semantic Image Segmentation arXiv:1706.05587 2017

# From classification to object detection and segmentation



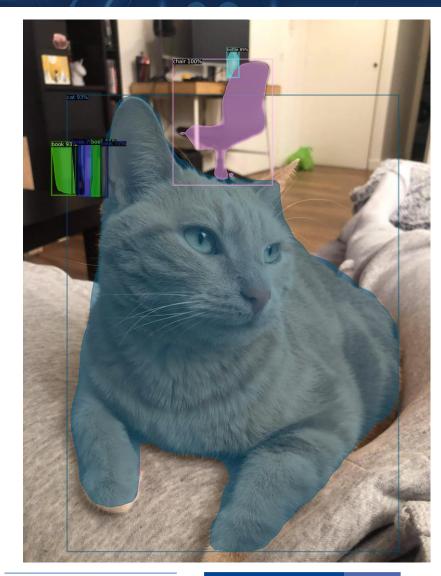
**Object detection and segmentation in deep learning** 

08/02/2023

Toulouse Midi-Pyrénée

# **Object detection: what is it?**

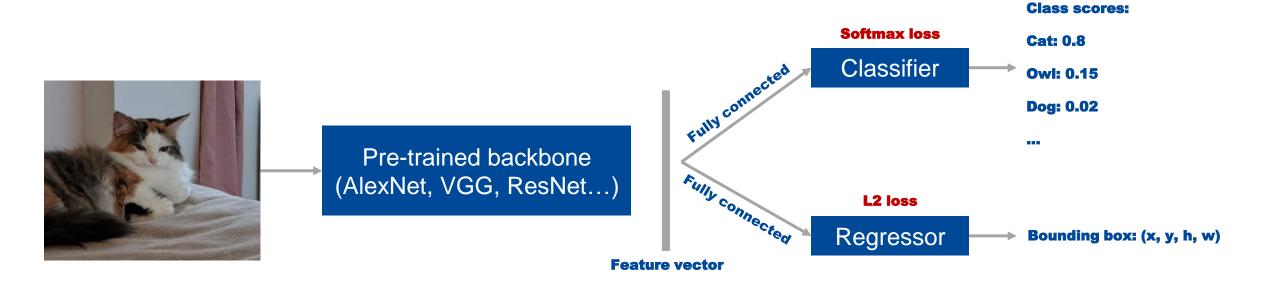
- The task of assigning a label and a bounding box (or a mask) to all objects in the image
- Semantic segmentation:
  - No objects, just pixels
  - Output a segmentation mask with the same size as the input
- Object detection: for each object output a label and a box (or mask)





# An easy case... Detecting single objects

Object detection is at the same time a **regression** problem and a **classification** task



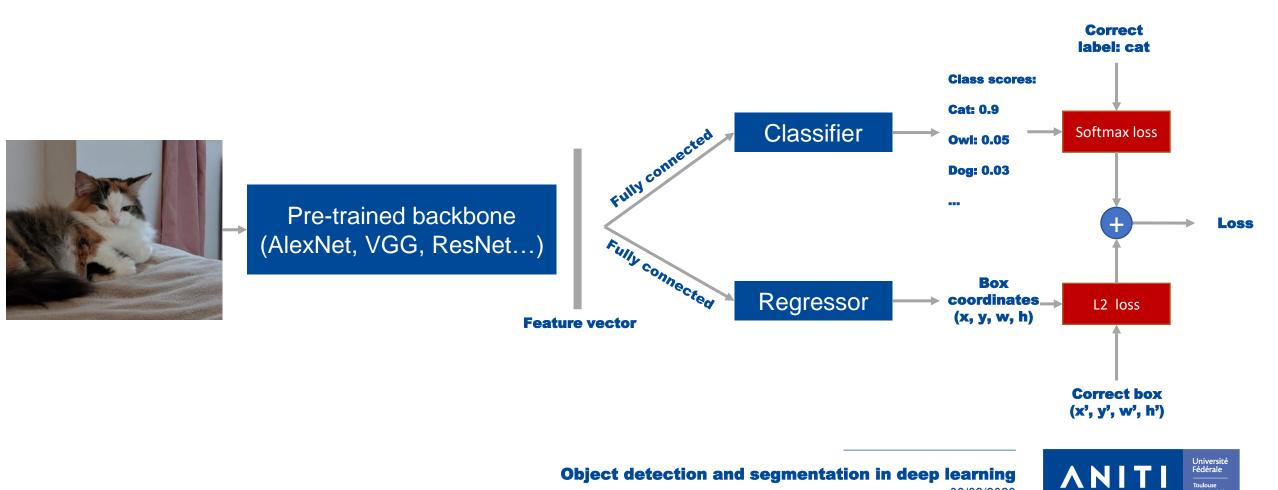


Université Fédérale

Toulouse Midi-Pyrénées

**ANITI** 

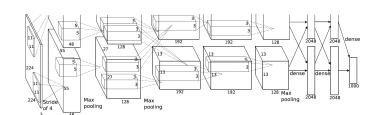
## **Detecting single objects: multitask loss**



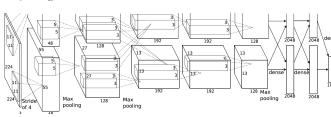
Toulouse Midi-Pyrénées

- Multiple outputs: variable number of objects per image
- Multiple types of output: category label, bounding boxes (orientation, velocity...)

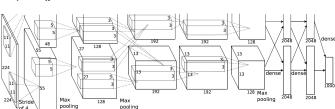










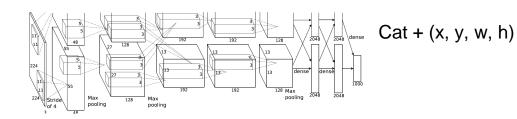


**Object detection and segmentation in deep learning** 08/02/2023

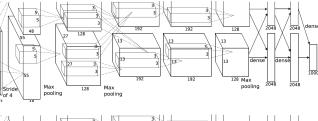


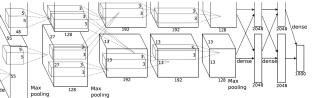
- Multiple outputs: variable number of objects per image
- Multiple types of output: category label, bounding boxes (orientation, velocity...)











**Object detection and segmentation in deep learning** 

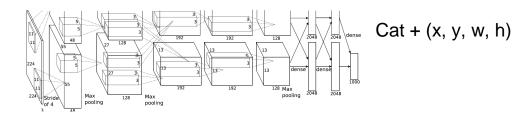


4 numbers to predict

08/02/2023

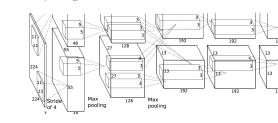
- Multiple outputs: variable number of objects per image
- Multiple types of output: category label, bounding boxes (orientation, velocity...)





4 numbers to predict



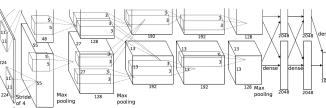


Dog + (x, y, w, h) Dog + (x, y, w, h) Cat + (x, y, w, h)

#### 12 numbers to predict

08/02/2023

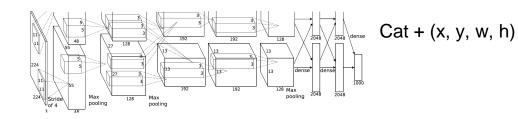


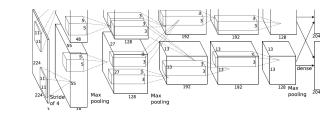




- Multiple outputs: variable number of objects per image
- Multiple types of output: category label, bounding boxes (orientation, velocity...)







Dog + (x, y, w, h) Dog + (x, y, w, h) Cat + (x, y, w, h)

Duck + (x, y, w, h) Duck + (x, y, w, h)

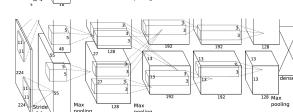
. . .

12 numbers to predict

Many numbers to predict!!

4 numbers to predict

to the second



\_\_\_\_\_

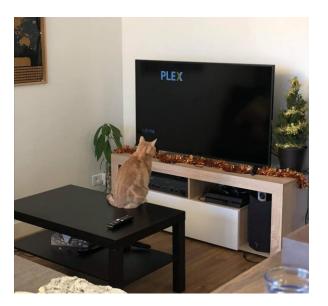
**Object detection and segmentation in deep learning** 08/02/2023



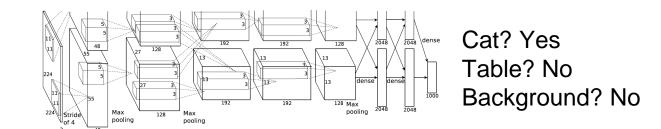
Adapted from http://cs231n.stanford.edu/slides/2022/lecture\_9\_jiajun.pdf

Very inefficient! For a 800x600 images ~ **58M boxes** Need to apply CNN to a huge number of locations!

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



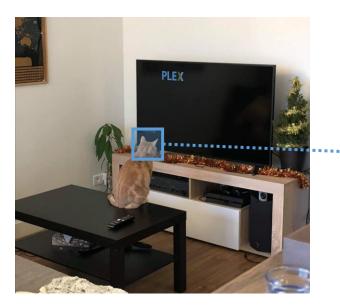
Extract patches





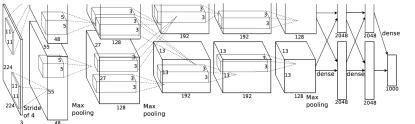
Very inefficient! For a 800x600 images ~ **58M boxes** Need to apply CNN to a huge number of locations!

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Extract patches





**Object detection and segmentation in deep learning** 

Cat? Yes Table? No Background? No



08/02/2023

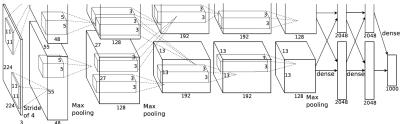
Very inefficient! For a 800x600 images ~ **58M boxes** Need to apply CNN to a huge number of locations!

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Extract patches





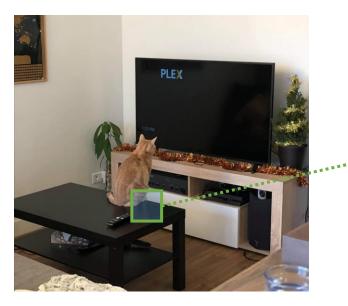
Cat? Yes Table? No Background? No



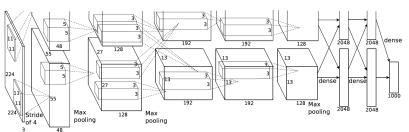
**Object detection and segmentation in deep learning** 08/02/2023

Very inefficient! For a 800x600 images ~ **58M boxes** Need to apply CNN to a huge number of locations!

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Extract patches



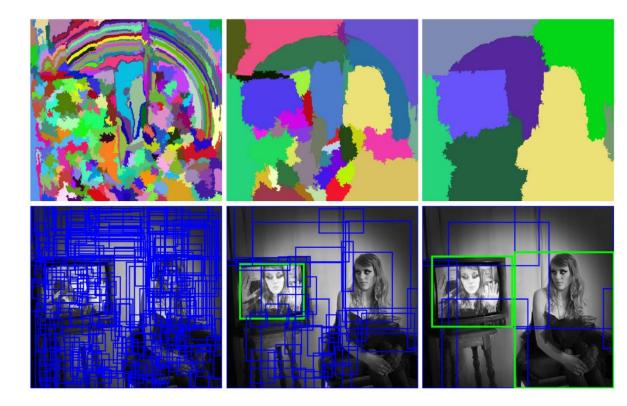
Cat? No Table? Yes Background? No



# **Object detection: region proposals**

#### Selective search algorithm :

- 1. Generate initial sub-segmentation, many candidate regions generation
- 2. Use greedy algorithm to recursively combine similar region into larger ones
  - 1. From set of regions, choose two that are most similar.
  - 2. Combine them into a single, larger region.
  - 3. Repeat the above steps for multiple iterations.
- 3. Use the generated regions to produce the final candidate region proposals



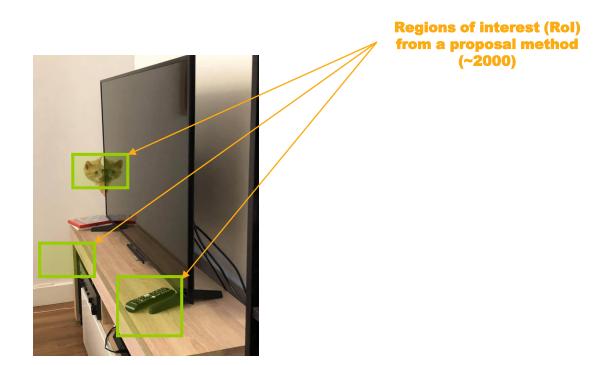


- Classify EACH proposed region (SVM)
- Bounding box regression:
  - Predict "transform" to correct the proposed Rol
  - 4 numbers:  $(t_x, t_y, t_h, t_w)$
- Final output:
  - Proposal:  $(p_x, p_y, p_h, p_w)$
  - Transform:  $(t_x, t_y, t_h, t_w)$  (a "correction")
  - Output box:  $(b_x, b_y, b_h, b_w)$ 
    - $b_x = p_x + p_w t_x$  and  $b_y = p_y + p_h t_y$
    - $b_w = p_w e^{t_w}$  and  $b_h = p_h e^{t_h}$



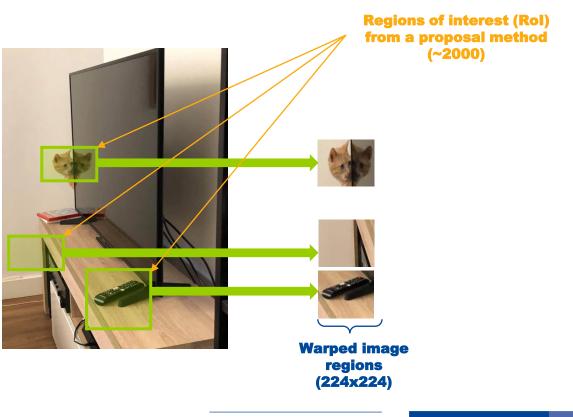


- Classify EACH proposed region (SVM)
- Bounding box regression:
  - Predict "transform" to correct the proposed Rol
  - 4 numbers:  $(t_x, t_y, t_h, t_w)$
- Final output:
  - Proposal:  $(p_x, p_y, p_h, p_w)$
  - Transform:  $(t_x, t_y, t_h, t_w)$  (a "correction")
  - Output box:  $(b_x, b_y, b_h, b_w)$ 
    - $b_x = p_x + p_w t_x$  and  $b_y = p_y + p_h t_y$
    - $b_w = p_w e^{t_w}$  and  $b_h = p_h e^{t_h}$



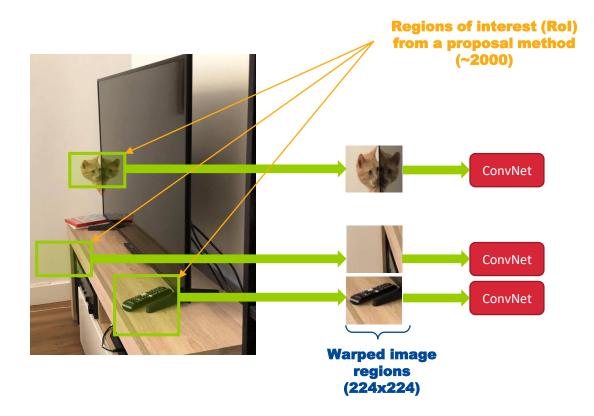


- Classify EACH proposed region (SVM)
- Bounding box regression:
  - Predict "transform" to correct the proposed Rol
  - 4 numbers:  $(t_x, t_y, t_h, t_w)$
- Final output:
  - Proposal:  $(p_x, p_y, p_h, p_w)$
  - Transform:  $(t_x, t_y, t_h, t_w)$  (a "correction")
  - Output box:  $(b_x, b_y, b_h, b_w)$ 
    - $b_x = p_x + p_w t_x$  and  $b_y = p_y + p_h t_y$
    - $b_w = p_w e^{t_w}$  and  $b_h = p_h e^{t_h}$



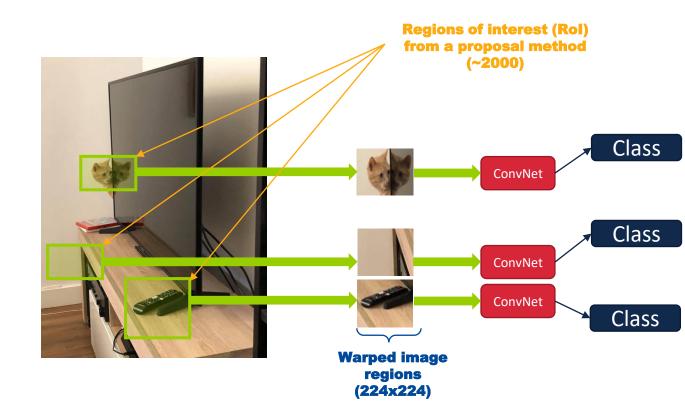


- Classify EACH proposed region (SVM)
- Bounding box regression:
  - Predict "transform" to correct the proposed Rol
  - 4 numbers:  $(t_x, t_y, t_h, t_w)$
- Final output:
  - Proposal:  $(p_x, p_y, p_h, p_w)$
  - Transform:  $(t_x, t_y, t_h, t_w)$  (a "correction")
  - Output box:  $(b_x, b_y, b_h, b_w)$ 
    - $b_x = p_x + p_w t_x$  and  $b_y = p_y + p_h t_y$
    - $b_w = p_w e^{t_w}$  and  $b_h = p_h e^{t_h}$





- Classify EACH proposed region (SVM)
- Bounding box regression:
  - Predict "transform" to correct the proposed Rol
  - 4 numbers:  $(t_x, t_y, t_h, t_w)$
- Final output:
  - Proposal:  $(p_x, p_y, p_h, p_w)$
  - Transform:  $(t_x, t_y, t_h, t_w)$  (a "correction")
  - Output box:  $(b_x, b_y, b_h, b_w)$ 
    - $b_x = p_x + p_w t_x$  and  $b_y = p_y + p_h t_y$
    - $b_w = p_w e^{t_w}$  and  $b_h = p_h e^{t_h}$

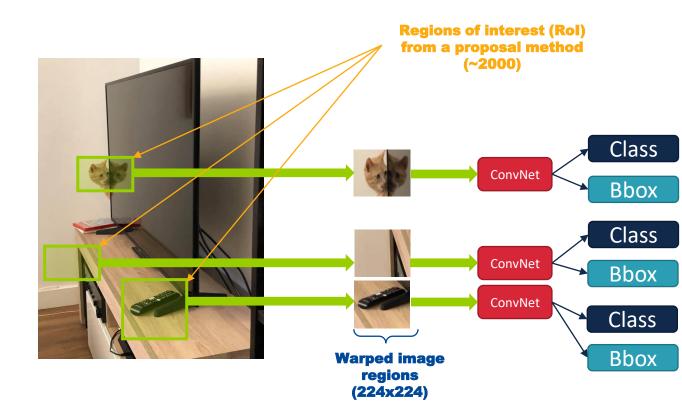


Université Fédérale

Toulouse Midi-Pyrénée

ΛΝΙΤ

- Classify EACH proposed region (SVM)
- Bounding box regression:
  - Predict "transform" to correct the proposed Rol
  - 4 numbers:  $(t_x, t_y, t_h, t_w)$
- Final output:
  - Proposal:  $(p_x, p_y, p_h, p_w)$
  - Transform:  $(t_x, t_y, t_h, t_w)$  (a "correction")
  - Output box:  $(b_x, b_y, b_h, b_w)$ 
    - $b_x = p_x + p_w t_x$  and  $b_y = p_y + p_h t_y$
    - $b_w = p_w e^{t_w}$  and  $b_h = p_h e^{t_h}$



Université Fédérale

Toulouse Midi-Pyrénées

ΛΝΙΤ

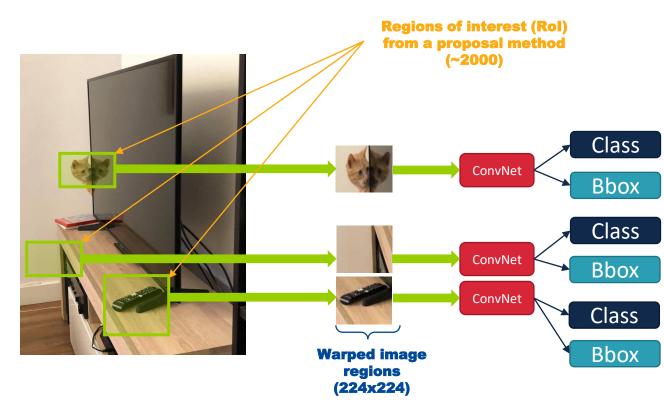


Problem: very slow! Need 2000 independent forward pass for each image

> Université Fédérale

Toulouse Midi-Pyrénées

- Classify EACH proposed region (SVM)
- Bounding box regression:
  - Predict "transform" to correct the proposed Rol
  - 4 numbers:  $(t_x, t_y, t_h, t_w)$
- Final output:
  - Proposal:  $(p_x, p_y, p_h, p_w)$
  - Transform:  $(t_x, t_y, t_h, t_w)$  (a "correction")
  - Output box:  $(b_x, b_y, b_h, b_w)$ 
    - $b_x = p_x + p_w t_x$  and  $b_y = p_y + p_h t_y$
    - $b_w = p_w e^{t_w}$  and  $b_h = p_h e^{t_h}$

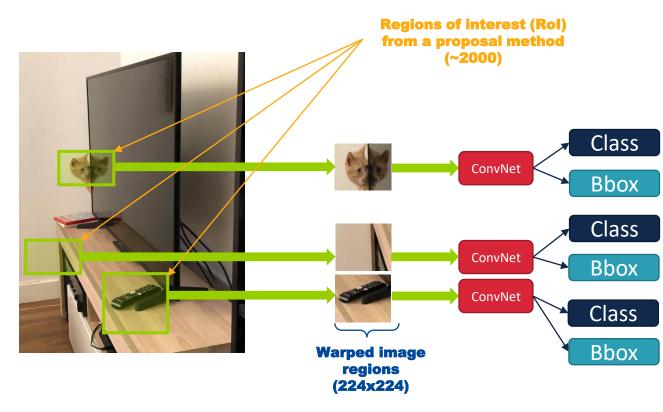




# **Object detection: "Slow" R-CNN (Girshick et al., 2013)**

Problem: very slow! Need 2000 independent forward pass for each image

- Classify EACH proposed region (SVM)
- Bounding box regression:
  - Predict "transform" to correct the proposed Rol
  - 4 numbers:  $(t_x, t_y, t_h, t_w)$
- Final output:
  - Proposal:  $(p_x, p_y, p_h, p_w)$
  - Transform:  $(t_x, t_y, t_h, t_w)$  (a "correction")
  - Output box:  $(b_x, b_y, b_h, b_w)$ 
    - $b_x = p_x + p_w t_x$  and  $b_y = p_y + p_h t_y$
    - $b_w = p_w e^{t_w}$  and  $b_h = p_h e^{t_h}$



#### **Object detection and segmentation in deep learning** 08/02/2023







Pre-trained ConvNet

Most of computations happens here (ResNet, VGG, AlexNet)

**Object detection and segmentation in deep learning** 



08/02/2023



Image features

Most of computations happens here (ResNet, VGG, AlexNet)

**Pre-trained** 

ConvNet

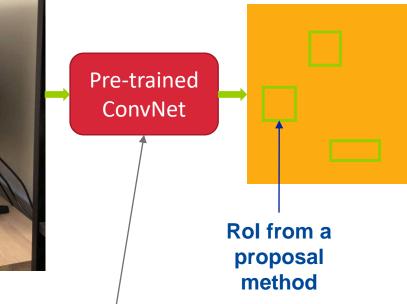
**Object detection and segmentation in deep learning** 



08/02/2023



#### Image features

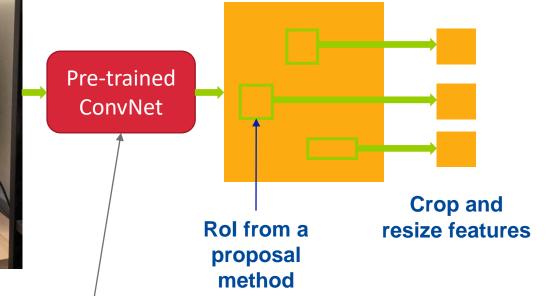


Most of computations happens here (ResNet, VGG, AlexNet)

**Object detection and segmentation in deep learning** 08/02/2023



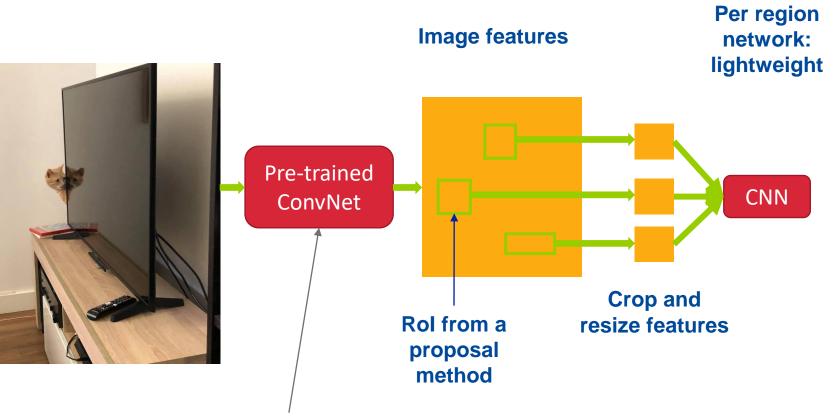




Most of computations happens here (ResNet, VGG, AlexNet)



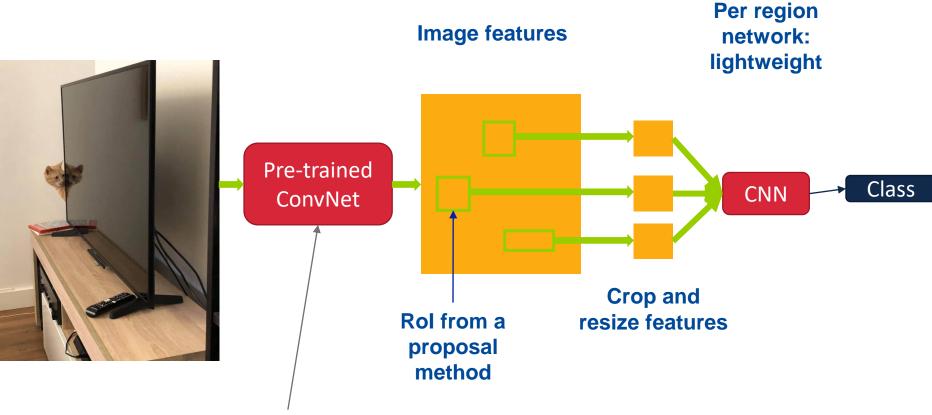
08/02/2023



Most of computations happens here (ResNet, VGG, AlexNet)

**Object detection and segmentation in deep learning** 

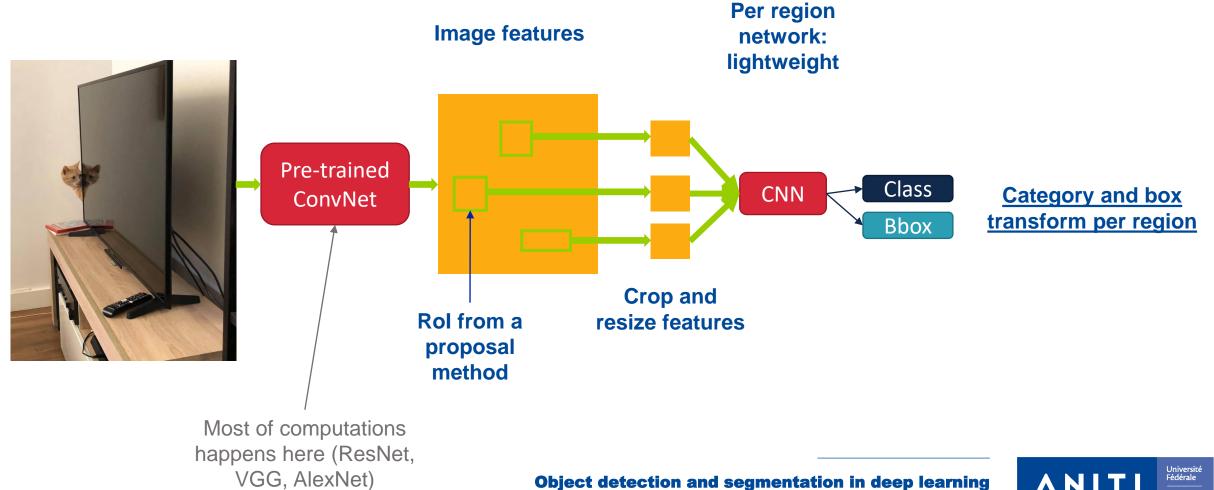




Most of computations happens here (ResNet, VGG, AlexNet)

**Object detection and segmentation in deep learning** 08/02/2023

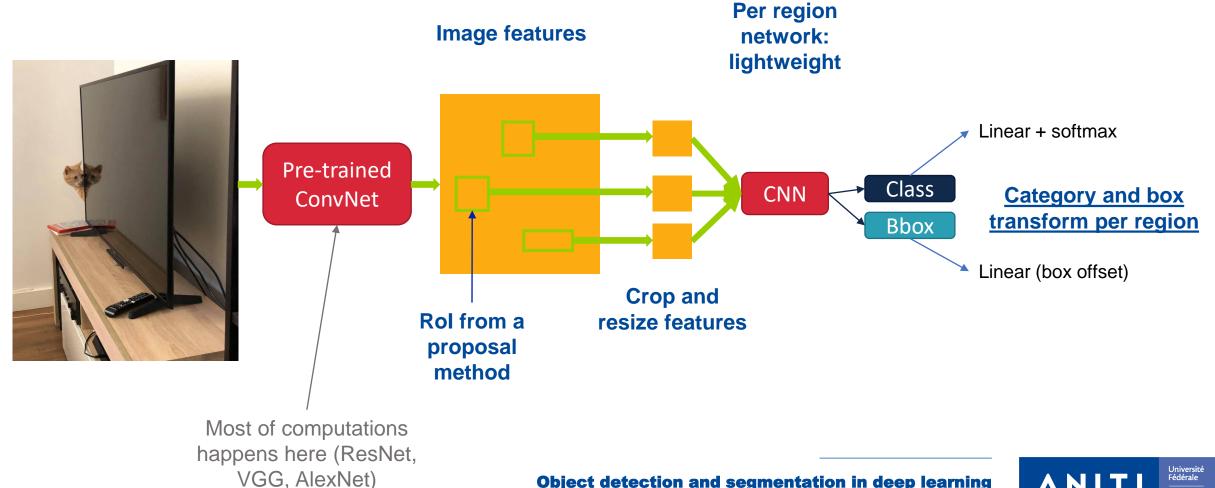




**Object detection and segmentation in deep learning** 



08/02/2023



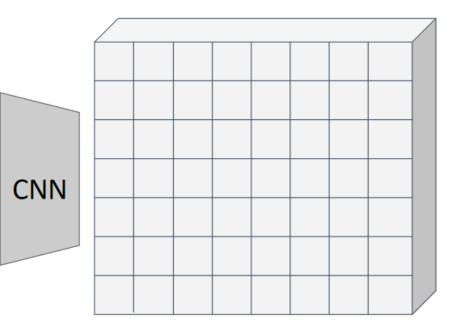


08/02/2023



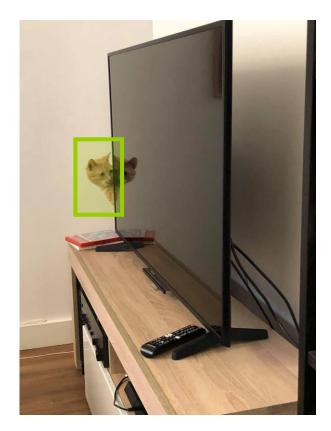
Input image (e.g. 3x640x480)

Feature map (e.g. 512x20x15)

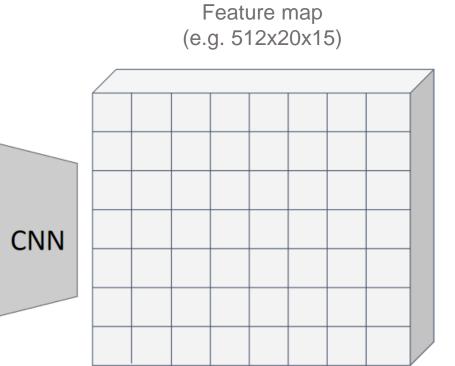




Adapted from http://cs231n.stanford.edu/slides/2022/lecture\_9\_jiajun.pdf



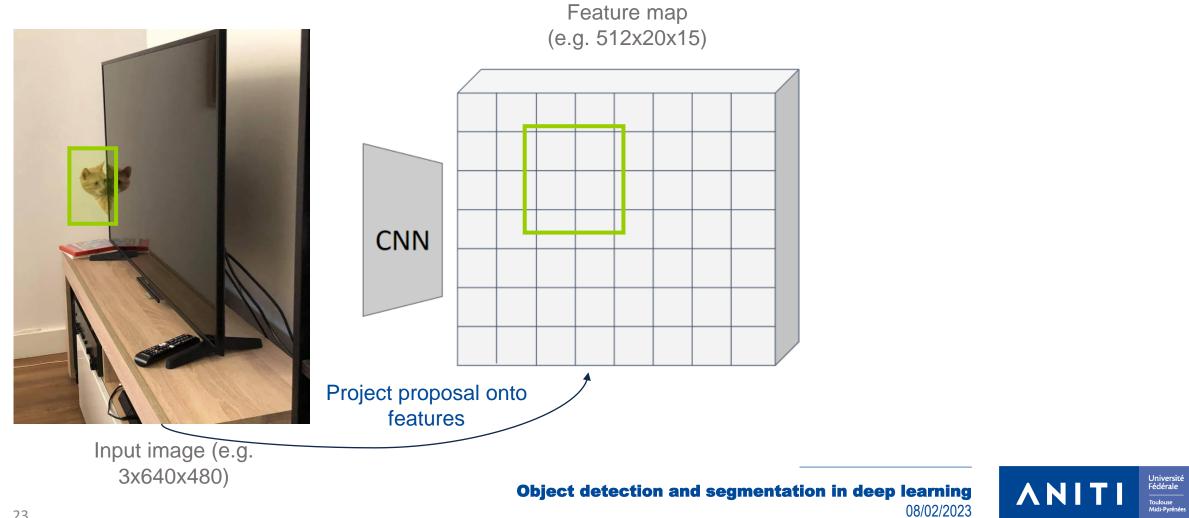
Input image (e.g. 3x640x480)

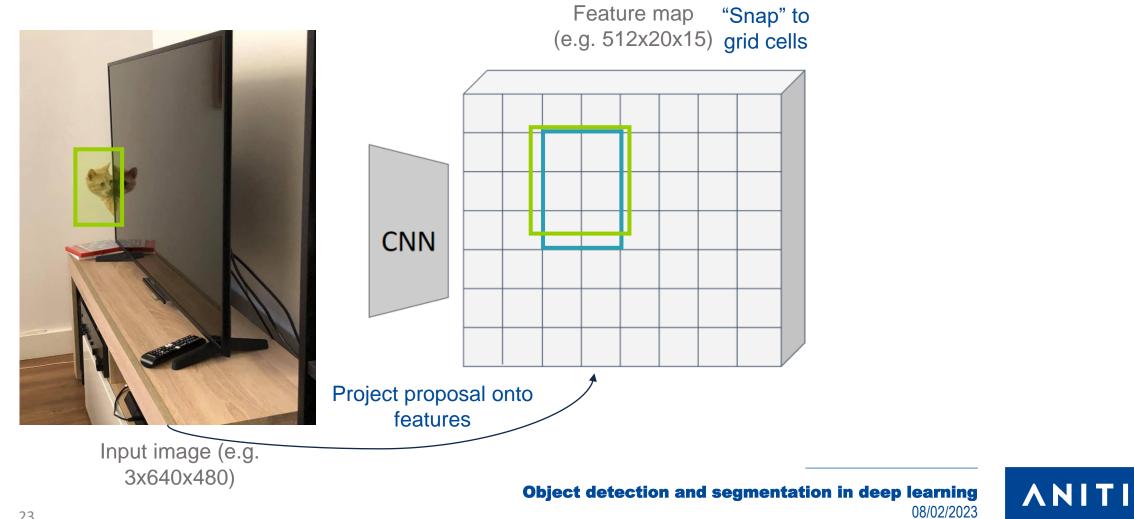


#### **Object detection and segmentation in deep learning** 08/02/2023



Adapted from http://cs231n.stanford.edu/slides/2022/lecture\_9\_jiajun.pdf

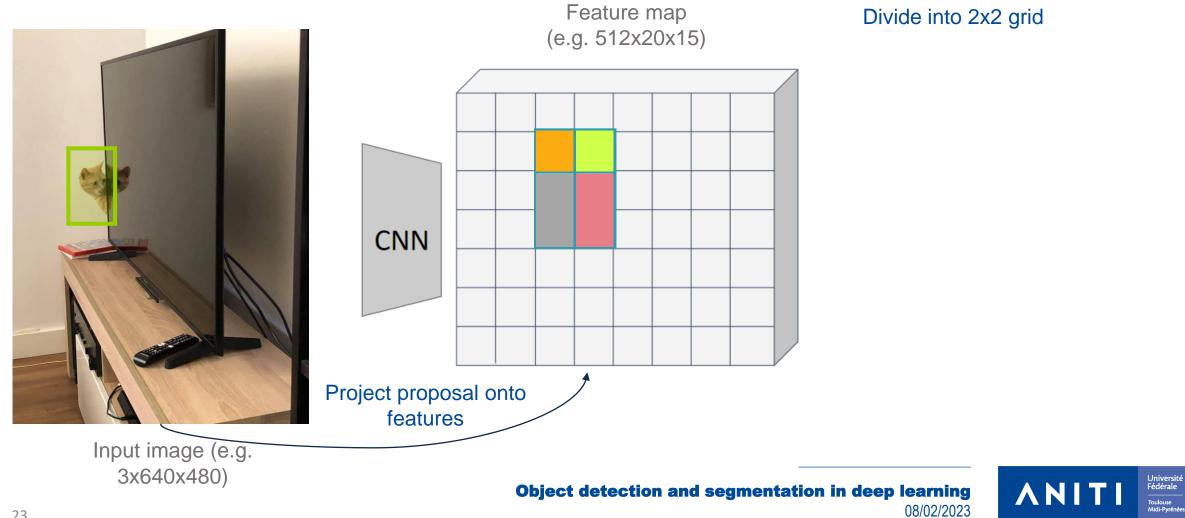




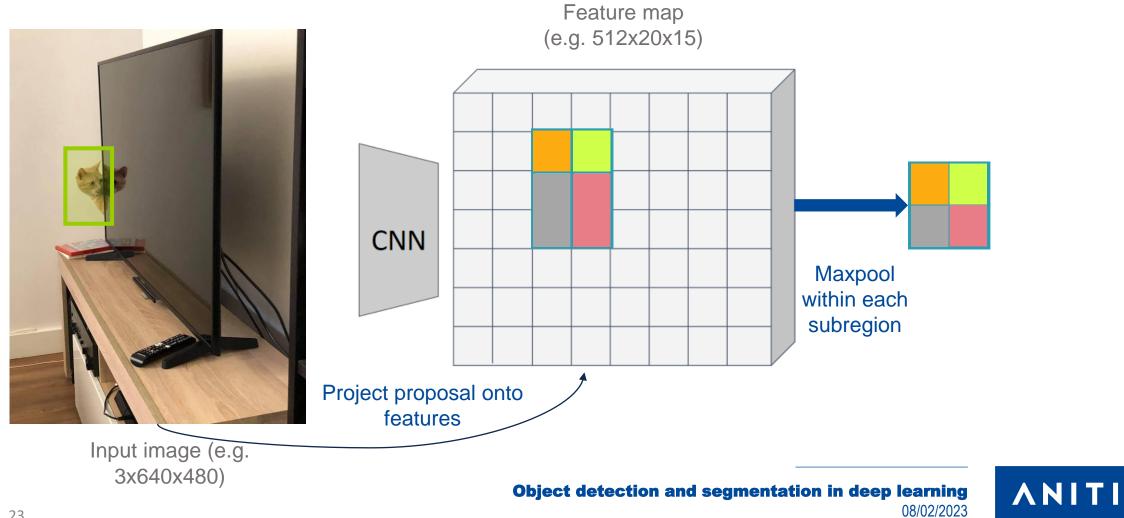
Université Fédérale

Toulouse Midi-Pyrénées



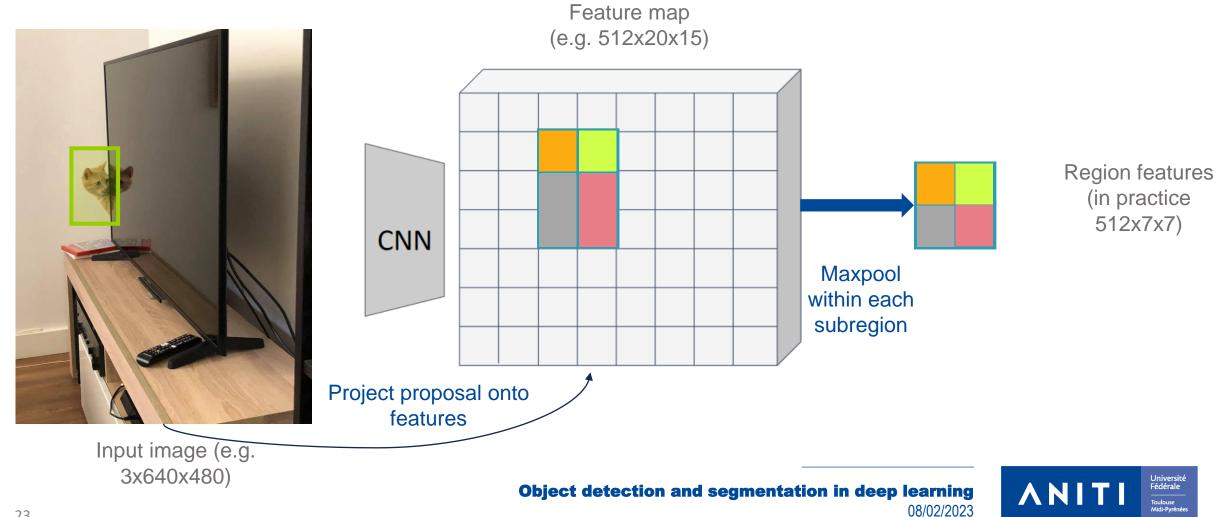


Adapted from http://cs231n.stanford.edu/slides/2022/lecture\_9\_jiajun.pdf



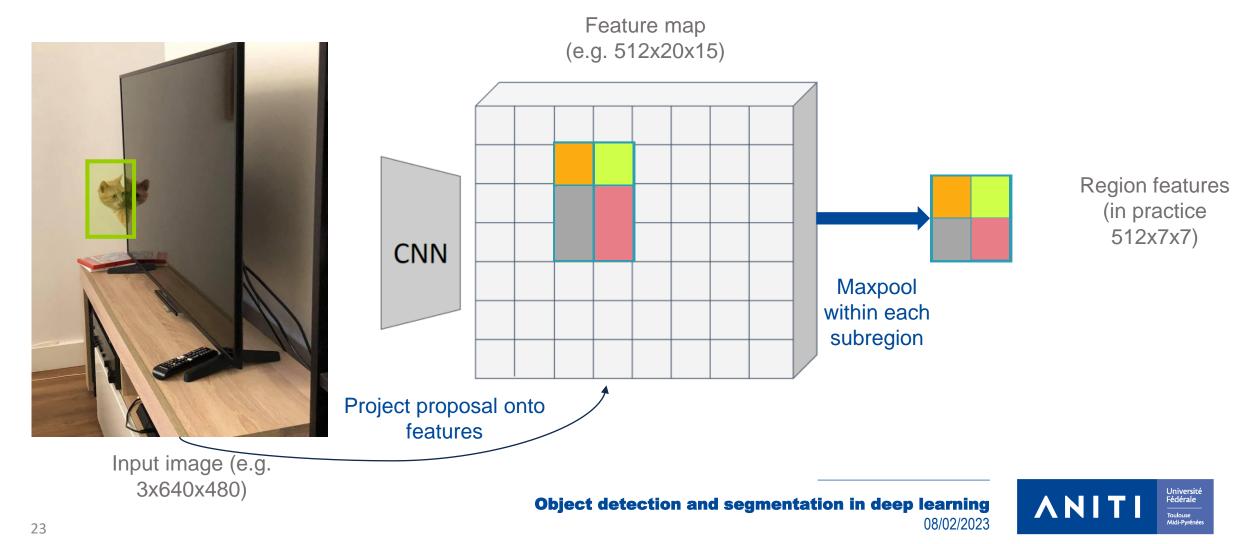
Université Fédérale

Toulouse Midi-Pyrénées



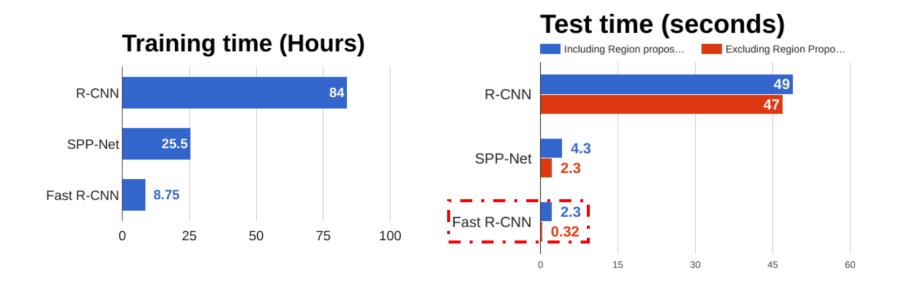
Problem: region features might be slightly misaligned  $\rightarrow$  RoI align

#### **Rol pooling**



#### **Object detection: Fast R-CNN vs. "Slow" R-CNN**

Runtime dominated by region proposals

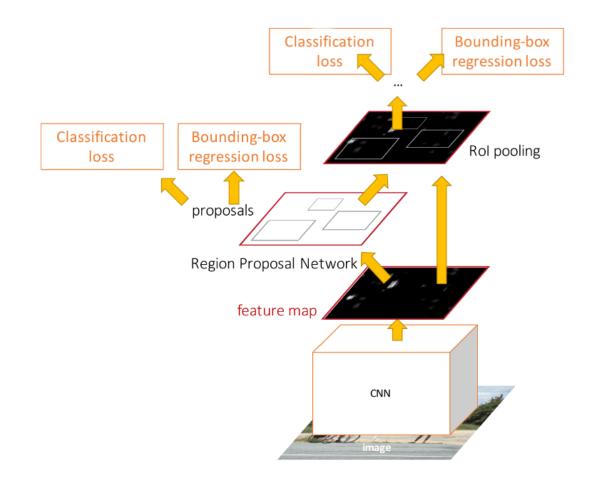


Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014 Girshick, "Fast R-CNN", ICCV 2015

Université Fédérale

Toulouse Midi-Pyrénées

ANITI



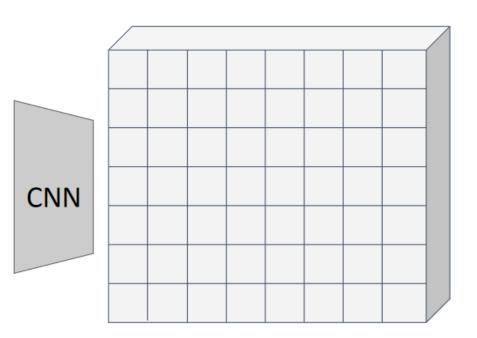
- Idea: insert a Region Proposal Network (RPN) to predict proposals from features
- Otherwise same as Fast R-CNN: crop features for each proposal, classify each one



Imagine an **anchor box** of fixed size at each point in the feature map

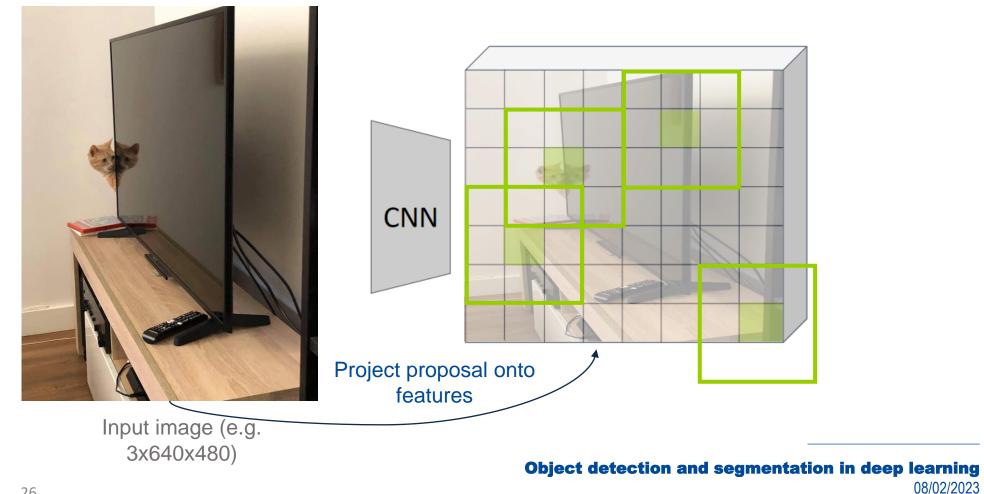


Input image (e.g. 3x640x480)



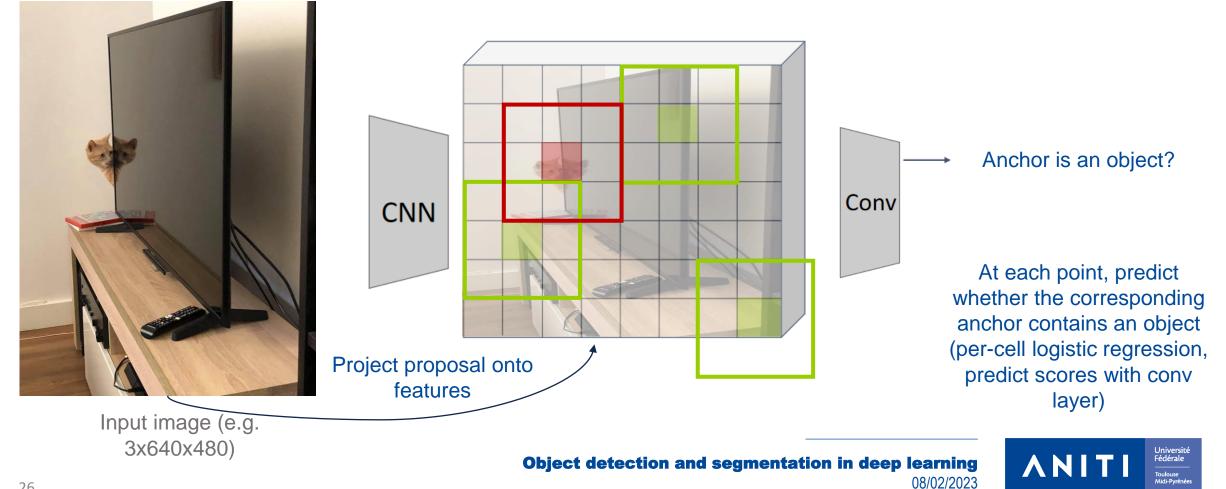


Imagine an anchor box of fixed size at each point in the feature map

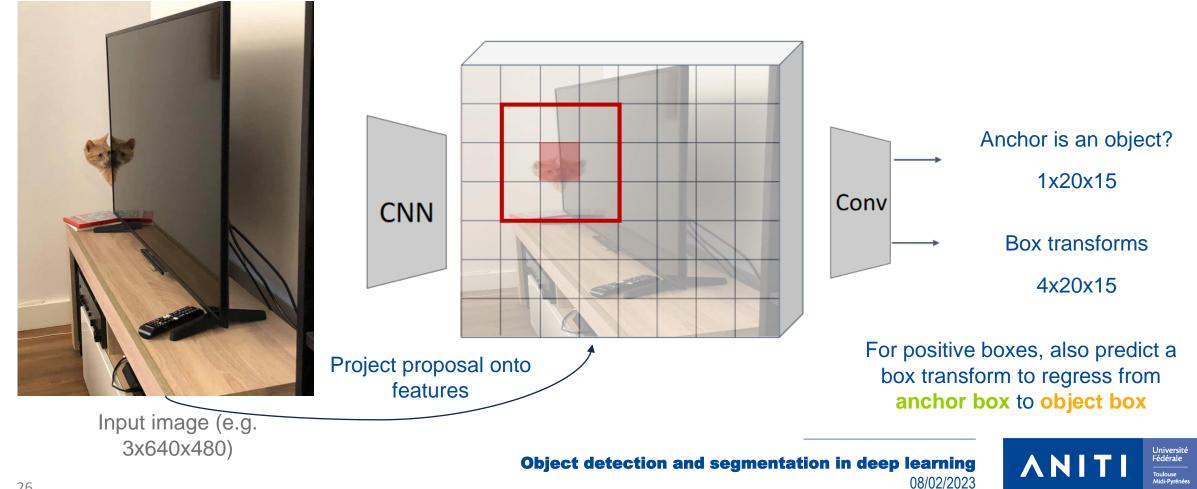




Imagine an **anchor box** of fixed size at each point in the feature map

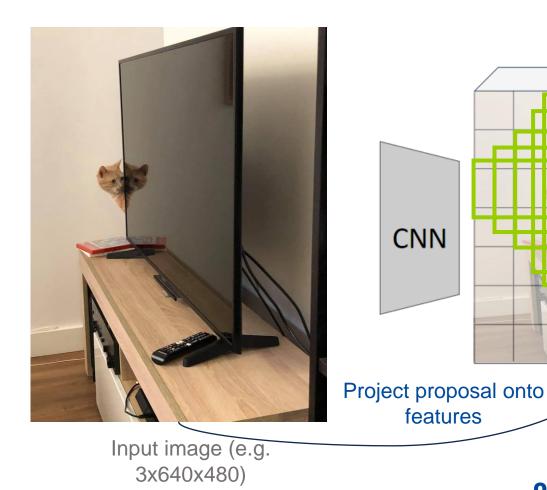


Imagine an **anchor box** of fixed size at each point in the feature map



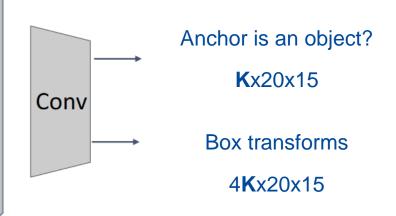
CNN

features



Feature map (e.g. 512x20x15) **Problem:** Anchor boxes may have the wrong size/shape

**Solution:** In practice, we use K different anchor boxes at each point!

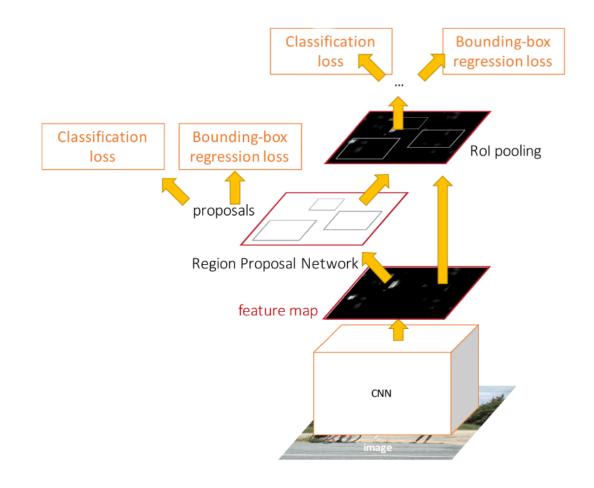


At test time: sort all Kx20x15 boxes by their score, and take the top ~300 as our region proposals

08/02/2023

**Object detection and segmentation in deep learning** 

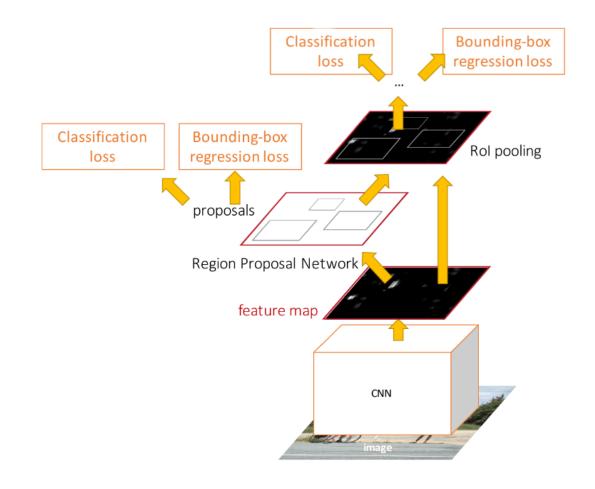




- Jointly train with 4 losses:
  - 1. RPN classification: anchor box is object / not an object
  - 2. RPN regression: predict transform from anchor box to proposal box
  - **3. Object classification**: classify proposals as background / object class
  - **4. Object regression**: predict transform from proposal to object box

Universito Fédérale

Toulouse Midi-Pyrénée



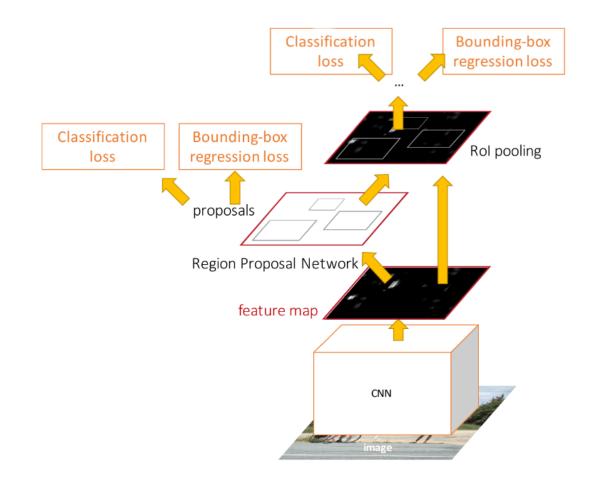
- Jointly train with 4 losses:
  - 1. RPN classification: anchor box is object / not an object
  - 2. RPN regression: predict transform from anchor box to proposal box
  - **3. Object classification**: classify proposals as background / object class
  - **4. Object regression**: predict transform from proposal to object box

Test time speed: 0.2 seconds vs 2.3 seconds (Fast R-CNN) vs 49 seconds (R-CNN)!

Universito Fédérale

Toulouse Midi-Pyrénée





- Faster R-CNN is a two-stage object detector:
  - 1. Extract features using a backbone network and propose regions (mostly background)
  - 2. For each region: crop features, predict object class and bounding box offset
  - Single-stage object detectors: YOLO, SSD, RetinaNet

Universito Fédérale

Toulouse Midi-Pyrénées

# **Object detection: single-stage object detectors (YOLO, SSD, RetinaNet)**

- Predict object class and location in ONE single step
- Similar to RPN of Faster R-CNN
- Predict the position of the box AND the class of the object in a box

Université Fédérale

Toulouse Midi-Pyrénée **Object detection: YOLO (Redmond et al., 2015)** 





# **Object detection: YOLO (Redmond et al., 2015)**

1. Divide the image into cells with an SxS grid









# **Object detection: YOLO (Redmond et al., 2015)**

# 2. Each cell predicts B bounding boxes

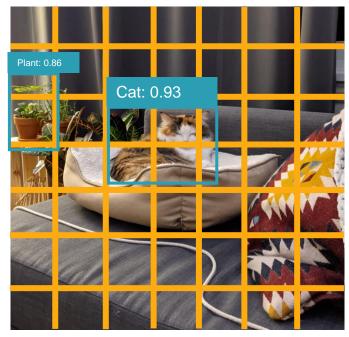




#### Same idea for YOLO v2, v3, v4, ..., v8!

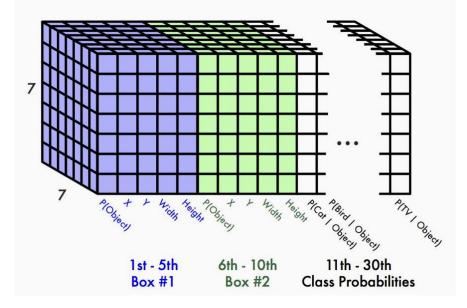
# **Object detection: YOLO (Redmond et al., 2015)**

3. Return bounding boxes above confidence threshold



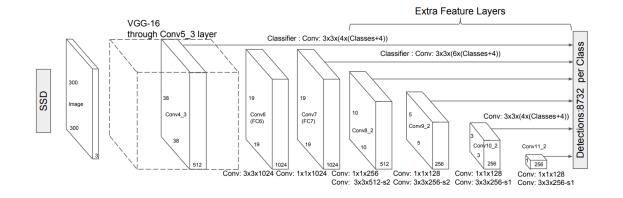
All other bounding boxes have a confidence probability less than the threshold (e.g 0.9) so they are suppressed.

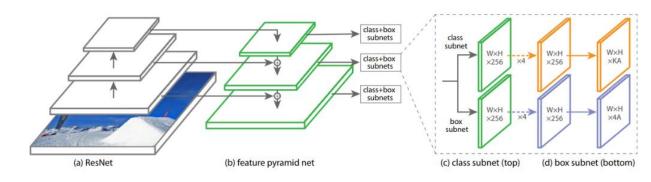
- Each cell predicts:
  - For each anchor box:
    - 4 (box offset) coordinates (*dx*, *dy*, *dh*, *dw*)
    - 1 confidence value
  - Class probabilities (80 for COCO dataset, 20 for PASCAL-VOC)
- Output: 7x7x(5\*B + C)
- Similar to RPN!





#### **Object detection: single stage object detectors**





08/02/2023



#### **Object detection and segmentation in deep learning**

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). Ssd: Single shot multibox detector. In *European conference on computer vision* (pp. 21-37). Springer, Cham Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In *Proceedings of the IEEE international conference on computer vision* (pp. 2980-2988).

32

# **Object detection (and segmentation): but...**

Object detection/segmentation is a wide field of research, and many architectures exist.



Object detection/segmentation is a wide field of research, and many architectures exist.

- Alternatives to anchor-based methods exist:
  - CenterNet (Duan et al., 2019)
  - FCOS (Tian et al., 2019)
  - R-FCN (Dai et al., 2016)
  - DETR (object detection with transformers) (Carion et al., 2020)

Object detection/segmentation is a wide field of research, and many architectures exist.

- Alternatives to anchor-based methods exist:
  - CenterNet (Duan et al., 2019)
  - FCOS (Tian et al., 2019)
  - R-FCN (Dai et al., 2016)
  - DETR (object detection with transformers) (Carion et al., 2020)
- Lot of variables:
  - Backbone network: VGG, ResNet, InceptionV2/V3, MobileNet, EfficientNet
  - Architecture style: two-stage, single-stage, hybrid...

Object detection/segmentation is a wide field of research, and many architectures exist.

- Alternatives to anchor-based methods exist:
  - CenterNet (Duan et al., 2019)
  - FCOS (Tian et al., 2019)
  - R-FCN (Dai et al., 2016)
  - DETR (object detection with transformers) (Carion et al., 2020)
- Lot of variables:
  - Backbone network: VGG, ResNet, InceptionV2/V3, MobileNet, EfficientNet
  - Architecture style: two-stage, single-stage, hybrid...
- Takeways:
  - Two-stage detectors are slower but more accurate
  - Single-stage detectors are faster but not as accurate
  - Bigger / Deeper backbones work better

Universite Fédérale

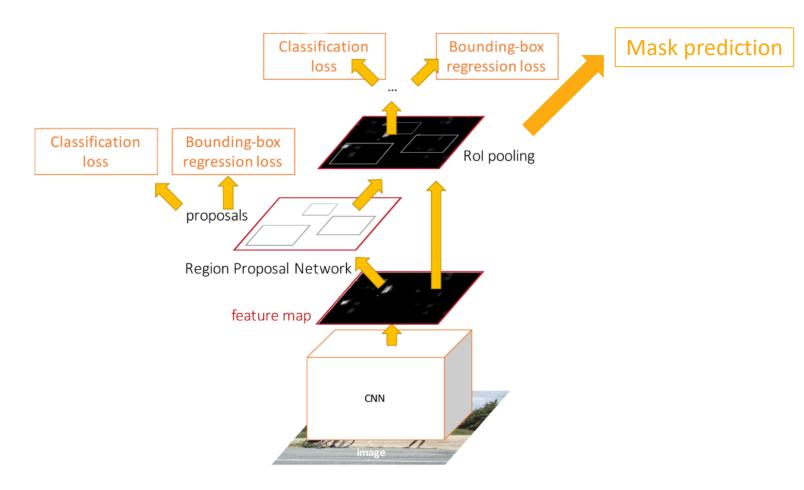
Toulouse Midi-Pyrénée

ΛΝΙΤ



33

#### **Instance segmentation: Mask R-CNN**

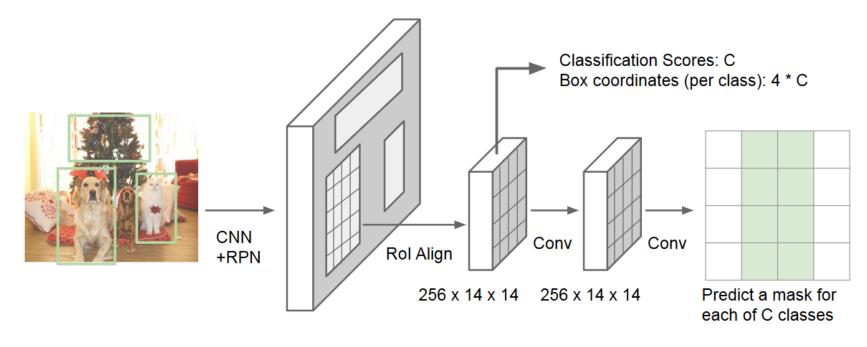


Add a small mask network that operates on each Rol and predicts 28x28 binary mask



#### **Instance segmentation: Mask R-CNN**

Add a small mask network that operates on each Rol and predicts 28x28 binary mask



C x 28 x 28

Université Fédérale

Toulouse Midi-Pyrénées

**ANITI** 

#### **Object detection and segmentation datasets**

- Pascal VOC dataset:
  - Detection, classification, segmentation
  - 10000 images with 20 categories
- COCO dataset:
  - Caption generation, object detection, key point detection and object segmentation
  - 120000 images for training / 40000 for validation with 80 categories
- KITTI autonomous driving dataset:
  - Detection, classification, semantic and instance segmentation, tracking...





(a) Image classification



(b) Object localization





(c) Semantic segmentation





## **Object detection and segmentation: frameworks**

Many implementations of the aforementioned model are available on GitHub.

TensorFlow Object Detection API: <u>https://github.com/tensorflow/models/tree/master/research/object\_detection</u>

Detectron2 (PyTorch): <a href="https://github.com/facebookresearch/detectron2">https://github.com/facebookresearch/detectron2</a>

Torchvision (PyTorch): <a href="https://pytorch.org/vision/stable/index.html">https://pytorch.org/vision/stable/index.html</a>

Use pre-trained model to finetune on your own dataset!

#### **Other object detection/segmentation tasks**

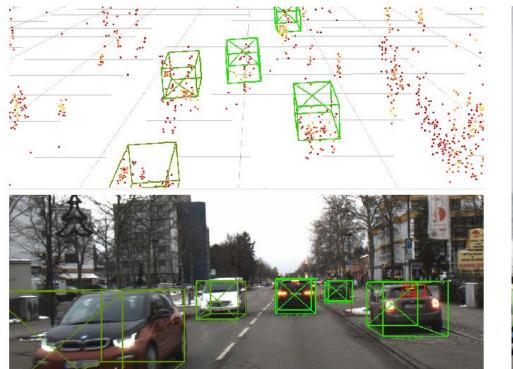
3D object detection

## Key point object detection

3D semantic segmentation

Université Fédérale

Toulouse Midi-Pyrénées





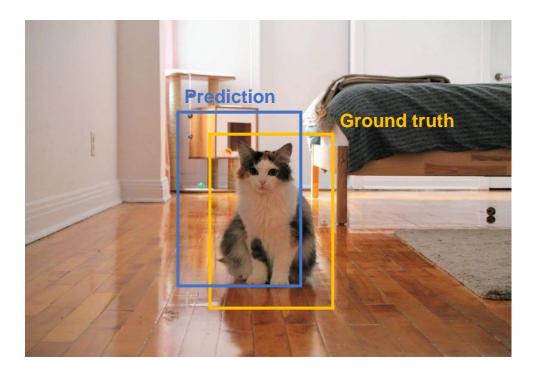




Université Fédérale

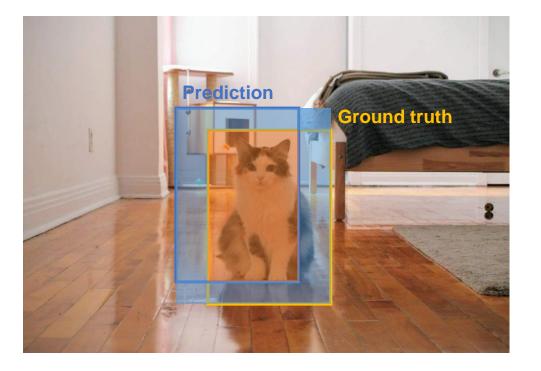
Toulouse Midi-Pyrénées

• How can we compare the prediction and the bounding boxes?



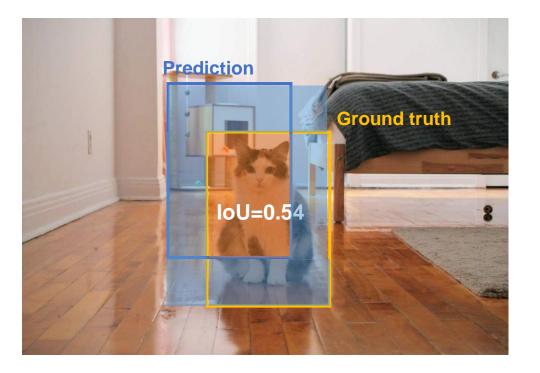


- How can we compare the prediction and the ٠ bounding boxes?
- Use the Intersection over Union (IoU):  $IoU = \frac{Area \ of \ Insersection}{Area \ of \ Union}$ •



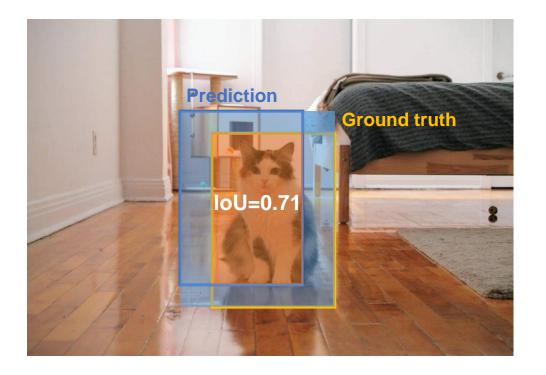


- How can we compare the prediction and the bounding boxes?
- Use the Intersection over Union (IoU):  $IoU = \frac{Area \ of \ Insersection}{Area \ of \ Union}$
- IoU > 0.5 is "decent"





- How can we compare the prediction and the bounding boxes?
- Use the Intersection over Union (IoU):  $IoU = \frac{Area \ of \ Insersection}{Area \ of \ Union}$
- IoU > 0.5 is "decent"
- IoU > 0.7 is "pretty good"

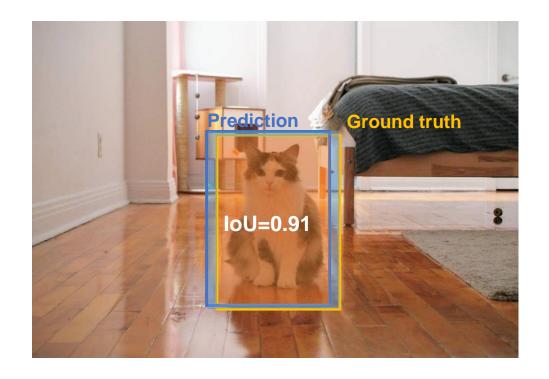




- How can we compare the prediction and the bounding boxes?
- Use the Intersection over Union (IoU):

 $IoU = \frac{Area \ of \ Insersection}{Area \ of \ Union}$ 

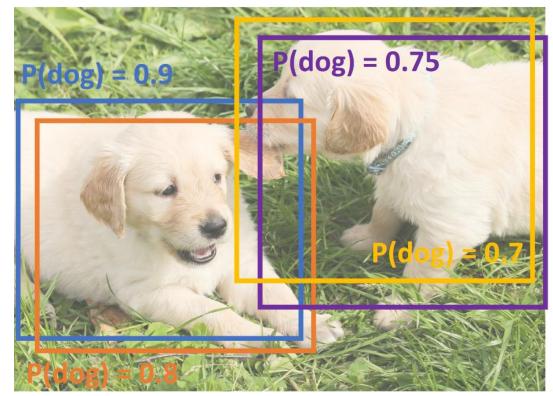
- IoU > 0.5 is "decent"
- IoU > 0.7 is "pretty good"
- IoU > 0.9 is "almost perfect"
- For segmentation masks this is done pixelwise



08/02/2023



- Problem: object detectors often output many overlapping detection (due to multiple anchors per pixel)
- Solution: post-process raw detections using Non-Max Suppression (NMS)
- <u>Algorithm:</u>
  - 1. Select highest-scoring box
  - 2. Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
  - 3. If any boxes remain, GOTO 1



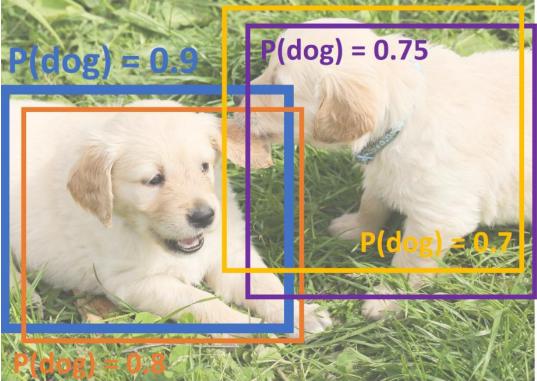
08/02/2023

Puppy image is CC0 Public Domain



- **Problem**: object detectors often output many overlapping detection (due to multiple anchors per pixel)
- Solution: post-process raw detections using Non-Max Suppression (NMS)
- <u>Algorithm:</u>
  - 1. Select highest-scoring box
  - 2. Eliminate lower-scoring boxes with IOU > threshold(e.g. 0.7)
  - 3. If any boxes remain, GOTO 1

 $IoU(\blacksquare, \blacksquare) = 0.78$  $IoU(\blacksquare, \blacksquare) = 0.05$  $IoU(\blacksquare, \blacksquare) = 0.07$ 



08/02/2023

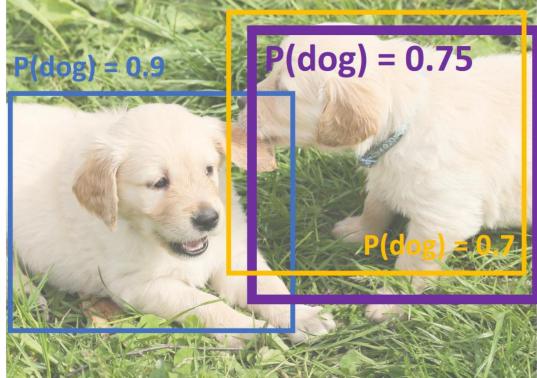
Puppy image is CCU Public Domain

#### **Object detection and segmentation in deep learning**



From: https://web.eecs.umich.edu/~justincj/slides/eecs498/498\_FA2019\_lecture15.pdf

- **Problem**: object detectors often output many overlapping detection (due to multiple anchors per pixel)
- Solution: post-process raw detections using Non-Max Suppression (NMS)
- <u>Algorithm:</u>
  - 1. Select highest-scoring box
  - 2. Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
  - 3. If any boxes remain, GOTO 1

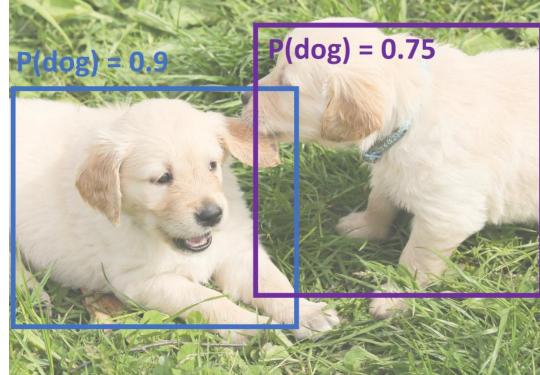


Puppy image is CC0 Public Domain





- Problem: object detectors often output many overlapping detection (due to multiple anchors per pixel)
- Solution: post-process raw detections using Non-Max Suppression (NMS)
- <u>Algorithm:</u>
  - 1. Select highest-scoring box
  - 2. Eliminate lower-scoring boxes with IoU > threshold (e.g. 0.7)
  - 3. If any boxes remain, GOTO 1



08/02/2023

Puppy image is CC0 Public Domain

• **Problem**: NMS may eliminate "good" boxes when objects are highly overlapping...

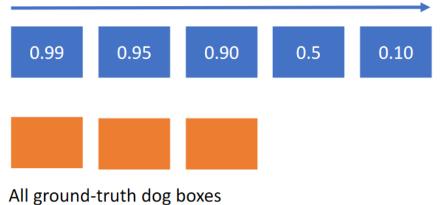
**Object detection and segmentation in deep learning** 



From: https://web.eecs.umich.edu/~justincj/slides/eecs498/498\_FA2019\_lecture15.pdf

- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = Area under Precision vs Recall Curve
  - 1. For each detection (highest score to lowest score)

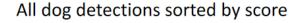
All dog detections sorted by score

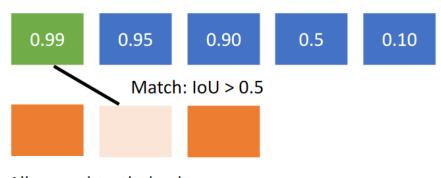


Université Fédérale

Toulouse Midi-Pyrénées

- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = Area under Precision vs Recall Curve
  - 1. For each detection (highest score to lowest score)
    - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
    - 2. Otherwise mark it as negative





All ground-truth dog boxes

From: https://web.eecs.umich.edu/~justincj/slides/eecs498/498\_FA2019\_lecture15.pdf

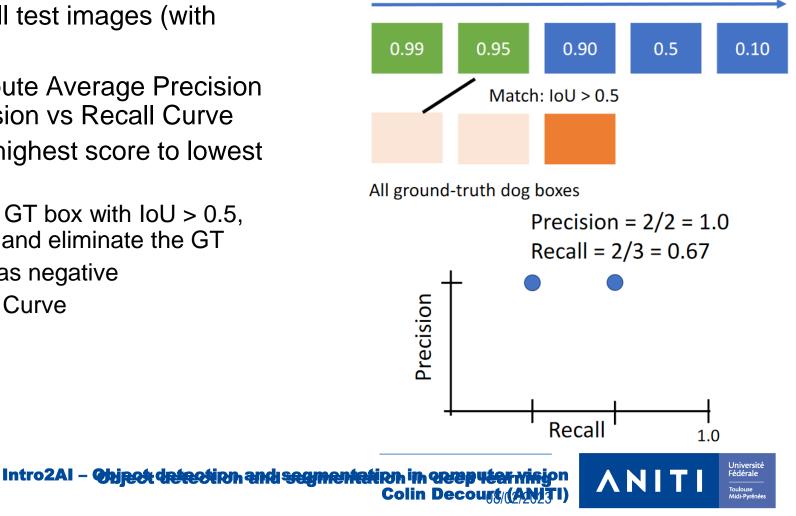
- 1. Run object detector on all test images (with NMS)
- For each category, compute Average Precision
  (AP) = Area under Precision vs Recall Curve
  - 1. For each detection (highest score to lowest score)
    - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
    - 2. Otherwise mark it as negative
    - 3. Plot a point on PR Curve

All dog detections sorted by score 0.99 0.95 0.90 0.5 0.10 Match: IoU > 0.5 All ground-truth dog boxes Precision = 1/1 = 1.0Recall = 1/3 = 0.33Precision Recall 1.0 Universito Fédérale ΛΝΙΤ Toulouse Midi-Pyrénée

From: https://web.eecs.umich.edu/~justincj/slides/eecs498/498\_FA2019\_lecture15.pdf

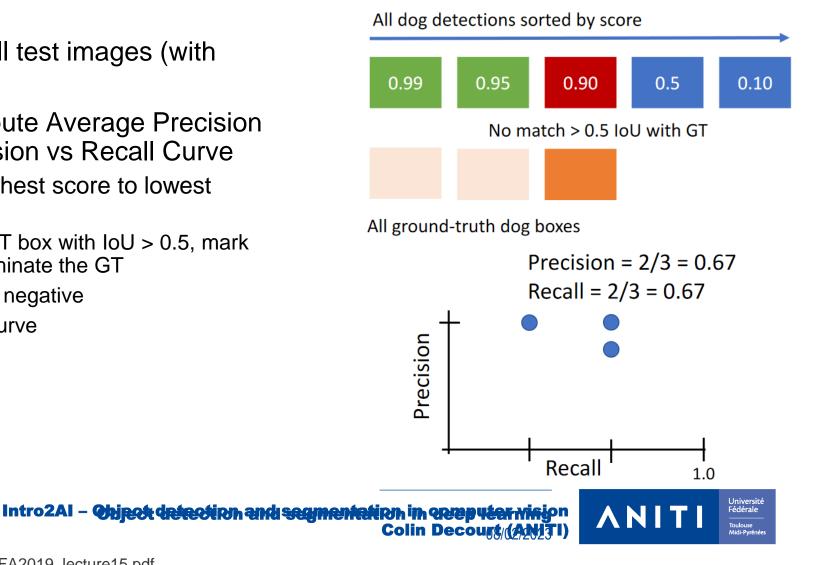
- 1. Run object detector on all test images (with NMS)
- For each category, compute Average Precision
  (AP) = Area under Precision vs Recall Curve
  - 1. For each detection (highest score to lowest score)
    - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
    - 2. Otherwise mark it as negative
    - 3. Plot a point on PR Curve

All dog detections sorted by score



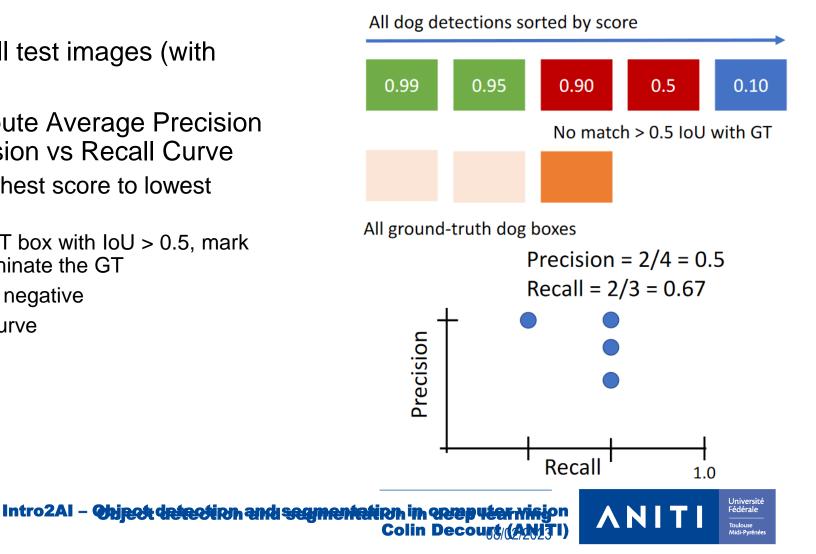
50

- Run object detector on all test images (with 1. NMS)
- For each category, compute Average Precision 2. (AP) = Area under Precision vs Recall Curve
  - For each detection (highest score to lowest 1. score)
    - If it matches some GT box with IoU > 0.5, mark 1. it as positive and eliminate the GT
    - Otherwise mark it as negative 2.
    - 3. Plot a point on PR Curve



51

- Run object detector on all test images (with 1. NMS)
- For each category, compute Average Precision 2. (AP) = Area under Precision vs Recall Curve
  - For each detection (highest score to lowest 1. score)
    - If it matches some GT box with IoU > 0.5, mark 1. it as positive and eliminate the GT
    - Otherwise mark it as negative 2.
    - 3. Plot a point on PR Curve



- 1. Run object detector on all test images (with NMS)
- For each category, compute Average Precision
  (AP) = Area under Precision vs Recall Curve
  - 1. For each detection (highest score to lowest score)
    - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
    - 2. Otherwise mark it as negative
    - 3. Plot a point on PR Curve

All dog detections sorted by score 0.5 0.99 0.95 0.90 0.10 Match: > 0.5 IoU All ground-truth dog boxes Precision = 3/5 = 0.6Recall = 3/3 = 1.0Precision Recall 1.0 Universito Fédérale ΛΝΙΤ Toulouse Midi-Pyrénée

#### Intro2AI – **Ohjpott detection and segmentation in geopyter viri**on Colin Decourt ((ANITI)

From: https://web.eecs.umich.edu/~justincj/slides/eecs498/498\_FA2019\_lecture15.pdf

- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision (AP) = Area under Precision vs Recall Curve
  - 1. For each detection (highest score to lowest score)
    - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
    - 2. Otherwise mark it as negative
    - 3. Plot a point on PR Curve
  - 2. Average Precision (AP) = Area under PR curve
- 3. Mean Average Precision (mAP) = average of AP for each category

CarAP = 0.65Cat AP = 0.80Dog AP = 0.86mAP@0.5 = 0.77



- 1. Run object detector on all test images (with NMS)
- 2. For each category, compute Average Precision(AP) = Area under Precision vs Recall Curve
  - 1. For each detection (highest score to lowest score)
    - 1. If it matches some GT box with IoU > 0.5, mark it as positive and eliminate the GT
    - 2. Otherwise mark it as negative
    - 3. Plot a point on PR Curve
  - 2. Average Precision (AP) = Area under PR curve
- 3. Mean Average Precision (mAP) = average of AP for each category
- 4. For "COCO mAP": Compute mAP@thresh for each IoU threshold (0.5, 0.55, 0.6, ..., 0.95) and take average

mAP@0.50 = 0.77 mAP@0.55 = 0.71 mAP@0.60 = 0.65

mAP@0.95 = 0.2

. . .

COCO mAP =0.4

