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1. INTRODUCTION

• Radar sensors seem particularly suited for critical and real-time automotive applications,

because they are not hampered by light or weather conditions.

• Range-azimuth-doppler (RAD) tensors provide the most informative data but they are

cumbersome to compute.

• We hypothesise the range-doppler (RD) spectrum contains enough information for both

detection and classification tasks in automotive radar while being low computationally

expensive.

• We propose an adaptation of the Faster R-CNN [1] object detector, with a lightweight backbone

for feature extraction.

• We evaluate our model on CARRADA [2] and RADDet [3] datasets.

2. MODEL ARCHITECTURE

• We adapt Faster R-CNN object detector for radar data and we propose a lightweight backbone

derived from the VGG architecture with only 7 convolutional layers.

• The stride in the Doppler dimension (2) is lower than the stride in the range Dimension (8), to

preserve Doppler information throughout the network.

• RD spectra are not translation invariant so we add the velocity as an additional feature.

3. RESULTS

MAP@0.5 CARRADA RADDET # PARAMETERS
# GFLOPS (PER 

FRAME)

#GMACS (PER 

FRAME)
INFERENCE TIME

DAROD (ours) 55.83 46.57 3.4M 12.6 6.3 25.31ms

RADDet [2] 18.57 22.87 7.8M 9.6 4.8 74.03ms

Faster R-CNN 

(pretained) [3]
61.56 49.55 41.3M 122 61 37.19ms

Faster R-CNN  (scratch) 

[3]
52.93 40.84 41.3M 122 61 37.19ms
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• DAROD outperforms the RADDet method on both datasets.

• DAROD remains competitive with Faster R-CNN which have large number of parameters comparing to DAROD.

• Radar based approaches are far more efficient than Faster R-CNN that uses up-sampling and deeper backbones.

• The pretraining of Faster R-CNN backbone on the ImageNet dataset helps to improve the detection performance.
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4. CONCLUSION

• We don’t need to use very deep convolutional neural network to extract

meaningful information from radar data.

• A simple and light backbone performs well for object detection and

classification tasks comparing to deeper image-based backbones which

reach better results but at higher cost.

• Our model doesn’t yet consider the angle and the temporal information but

achieve good results without it.
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